Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.2989
Cited By
Techniques for Learning Binary Stochastic Feedforward Neural Networks
11 June 2014
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Techniques for Learning Binary Stochastic Feedforward Neural Networks"
28 / 28 papers shown
Title
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
AskewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks
Louis Leconte
S. Schechtman
Eric Moulines
29
4
0
07 Nov 2022
Learning to segment from object sizes
Denis Baruvcić
Czech Republic
SSeg
13
1
0
01 Jul 2022
Modelling Latent Translations for Cross-Lingual Transfer
E. Ponti
Julia Kreutzer
Ivan Vulić
Siva Reddy
29
18
0
23 Jul 2021
Fitting summary statistics of neural data with a differentiable spiking network simulator
G. Bellec
Shuqi Wang
Alireza Modirshanechi
Johanni Brea
W. Gerstner
31
11
0
18 Jun 2021
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Alexander Shekhovtsov
V. Yanush
B. Flach
MQ
34
10
0
04 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Image compression optimized for 3D reconstruction by utilizing deep neural networks
Alexander M. Golts
Y. Schechner
3DV
29
12
0
27 Mar 2020
Generating Natural Language Adversarial Examples on a Large Scale with Generative Models
Yankun Ren
J. Lin
Siliang Tang
Jun Zhou
Shuang Yang
Yuan Qi
Xiang Ren
GAN
AAML
SILM
14
21
0
10 Mar 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Learned Variable-Rate Image Compression with Residual Divisive Normalization
Mohammad Akbari
Jie Liang
Jingning Han
Chengjie Tu
22
25
0
11 Dec 2019
Stochastic Feedforward Neural Networks: Universal Approximation
Thomas Merkh
Guido Montúfar
17
8
0
22 Oct 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
Accurate and Diverse Sampling of Sequences based on a "Best of Many" Sample Objective
Apratim Bhattacharyya
Bernt Schiele
Mario Fritz
28
110
0
20 Jun 2018
Deep Learning for Joint Source-Channel Coding of Text
Nariman Farsad
Milind Rao
Andrea J. Goldsmith
26
341
0
19 Feb 2018
Learning to Inpaint for Image Compression
M. H. Baig
V. Koltun
Lorenzo Torresani
AI4CE
11
55
0
26 Sep 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
32
282
0
21 Mar 2017
Stochastic Generative Hashing
Bo Dai
Ruiqi Guo
Sanjiv Kumar
Niao He
Le Song
TPM
32
106
0
11 Jan 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
21
2,505
0
02 Nov 2016
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
52
288
0
22 Feb 2016
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
34
2,341
0
19 Nov 2015
Variable Rate Image Compression with Recurrent Neural Networks
G. Toderici
Sean M. O'Malley
S. Hwang
Damien Vincent
David C. Minnen
S. Baluja
Michele Covell
Rahul Sukthankar
16
667
0
19 Nov 2015
Predicting distributions with Linearizing Belief Networks
Yann N. Dauphin
David Grangier
23
18
0
17 Nov 2015
Describing Multimedia Content using Attention-based Encoder--Decoder Networks
Kyunghyun Cho
Aaron Courville
Yoshua Bengio
32
411
0
04 Jul 2015
Bidirectional Recurrent Neural Networks as Generative Models - Reconstructing Gaps in Time Series
Mathias Berglund
T. Raiko
Mikko Honkala
L. Kärkkäinen
A. Vetek
J. Karhunen
BDL
27
125
0
07 Apr 2015
Difference Target Propagation
Dong-Hyun Lee
Saizheng Zhang
Asja Fischer
Yoshua Bengio
AAML
23
346
0
23 Dec 2014
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,636
0
03 Jul 2012
1