ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.0099
  4. Cited By
Venture: a higher-order probabilistic programming platform with
  programmable inference

Venture: a higher-order probabilistic programming platform with programmable inference

1 April 2014
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
ArXivPDFHTML

Papers citing "Venture: a higher-order probabilistic programming platform with programmable inference"

35 / 35 papers shown
Title
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
42
0
0
10 Jun 2023
Declarative Probabilistic Logic Programming in Discrete-Continuous
  Domains
Declarative Probabilistic Logic Programming in Discrete-Continuous Domains
Pedro Zuidberg Dos Martires
Luc de Raedt
Angelika Kimmig
34
4
0
21 Feb 2023
ADEV: Sound Automatic Differentiation of Expected Values of
  Probabilistic Programs
ADEV: Sound Automatic Differentiation of Expected Values of Probabilistic Programs
Alexander K. Lew
Mathieu Huot
S. Staton
Vikash K. Mansinghka
22
20
0
13 Dec 2022
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
26
10
0
26 Oct 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
29
9
0
22 Aug 2022
Unifying AI Algorithms with Probabilistic Programming using Implicitly
  Defined Representations
Unifying AI Algorithms with Probabilistic Programming using Implicitly Defined Representations
Avi Pfeffer
M. Harradon
Joseph Campolongo
S. Cvijic
24
2
0
05 Oct 2021
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDL
MedIm
22
9
0
16 Sep 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
11
0
0
02 Mar 2020
Lazy object copy as a platform for population-based probabilistic
  programming
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
21
5
0
09 Jan 2020
Parameter elimination in particle Gibbs sampling
Parameter elimination in particle Gibbs sampling
A. Wigren
Riccardo Sven Risuleo
Lawrence M. Murray
Fredrik Lindsten
27
15
0
30 Oct 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
34
19
0
29 Oct 2019
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
33
58
0
14 Jul 2019
Probabilistic programming for birth-death models of evolution using an
  alive particle filter with delayed sampling
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
29
10
0
10 Jul 2019
Declarative Learning-Based Programming as an Interface to AI Systems
Declarative Learning-Based Programming as an Interface to AI Systems
Parisa Kordjamshidi
Dan Roth
Kristian Kersting
24
4
0
18 Jun 2019
The Random Conditional Distribution for Higher-Order Probabilistic
  Inference
The Random Conditional Distribution for Higher-Order Probabilistic Inference
Zenna Tavares
Xin Zhang
Edgar Minaysan
Javier Burroni
Rajesh Ranganath
Armando Solar-Lezama
22
9
0
25 Mar 2019
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
26
12
0
04 Dec 2018
Composing Modeling and Inference Operations with Probabilistic Program
  Combinators
Composing Modeling and Inference Operations with Probabilistic Program Combinators
Eli Sennesh
Adam Scibior
Hao Wu
Jan-Willem van de Meent
TPM
18
1
0
14 Nov 2018
Probabilistic Programming with Densities in SlicStan: Efficient,
  Flexible and Deterministic
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
33
23
0
02 Nov 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
35
196
0
27 Sep 2018
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized
  Semantics and Inference Algorithms
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms
Yi Wu
Siddharth Srivastava
N. Hay
S. Du
Stuart J. Russell
39
25
0
06 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
27
30
0
01 Jun 2018
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
888
0
11 Nov 2017
Proximity Variational Inference
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
13
21
0
24 May 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
36
193
0
13 Jan 2017
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
52
143
0
31 Oct 2016
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
26
300
0
31 Oct 2016
Deep Amortized Inference for Probabilistic Programs
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
24
82
0
18 Oct 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
47
710
0
02 Mar 2016
Semantics for probabilistic programming: higher-order functions,
  continuous distributions, and soft constraints
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S. Staton
Hongseok Yang
C. Heunen
Ohad Kammar
Frank Wood
19
135
0
19 Jan 2016
BayesDB: A probabilistic programming system for querying the probable
  implications of data
BayesDB: A probabilistic programming system for querying the probable implications of data
Vikash K. Mansinghka
R. Tibbetts
Jay Baxter
Pat Shafto
Baxter S. Eaves
19
38
0
15 Dec 2015
Getting Started with Particle Metropolis-Hastings for Inference in
  Nonlinear Dynamical Models
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
J. Dahlin
Thomas B. Schon
23
25
0
05 Nov 2015
C3: Lightweight Incrementalized MCMC for Probabilistic Programs using
  Continuations and Callsite Caching
C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching
Daniel E. Ritchie
Andreas Stuhlmuller
Noah D. Goodman
8
30
0
07 Sep 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
37
232
0
10 Jun 2015
Path Finding under Uncertainty through Probabilistic Inference
Path Finding under Uncertainty through Probabilistic Inference
David Tolpin
Brooks Paige
Jan-Willem van de Meent
Frank Wood
TPM
30
0
0
25 Feb 2015
A Compilation Target for Probabilistic Programming Languages
A Compilation Target for Probabilistic Programming Languages
Brooks Paige
Frank Wood
24
80
0
03 Mar 2014
1