ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.5876
  4. Cited By
Manifold Gaussian Processes for Regression

Manifold Gaussian Processes for Regression

24 February 2014
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
ArXivPDFHTML

Papers citing "Manifold Gaussian Processes for Regression"

44 / 44 papers shown
Title
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Xizhuo
Zhang
AI4CE
29
0
0
26 Apr 2025
Surrogate-based optimization of system architectures subject to hidden constraints
Surrogate-based optimization of system architectures subject to hidden constraints
J. Bussemaker
P. Saves
N. Bartoli
T. Lefebvre
Björn Nagel
AI4CE
128
2
0
11 Apr 2025
Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
I. Kavrakov
Gledson Rodrigo Tondo
Guido Morgenthal
AI4CE
51
1
0
21 May 2024
Predictive Churn with the Set of Good Models
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
Deep Pipeline Embeddings for AutoML
Deep Pipeline Embeddings for AutoML
Sebastian Pineda Arango
Josif Grabocka
28
2
0
23 May 2023
Data-Efficient Characterization of the Global Dynamics of Robot
  Controllers with Confidence Guarantees
Data-Efficient Characterization of the Global Dynamics of Robot Controllers with Confidence Guarantees
Ewerton R. Vieira
A. Sivaramakrishnan
Yao Song
Edgar Granados
Marcio Gameiro
Konstantin Mischaikow
Ying Hung
Kostas E. Bekris
AI4CE
30
3
0
04 Oct 2022
Constraining Gaussian Processes to Systems of Linear Ordinary
  Differential Equations
Constraining Gaussian Processes to Systems of Linear Ordinary Differential Equations
Andreas Besginow
Markus Lange-Hegermann
32
11
0
26 Aug 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
17
6
0
30 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
21
48
0
01 May 2022
Modelling Non-Smooth Signals with Complex Spectral Structure
Modelling Non-Smooth Signals with Complex Spectral Structure
W. Bruinsma
Martin Tegnér
Richard Turner
22
6
0
14 Mar 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
39
44
0
22 Feb 2022
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Deebul Nair
Nico Hochgeschwender
Miguel A. Olivares-Mendez
OOD
27
7
0
03 Feb 2022
Dense Gaussian Processes for Few-Shot Segmentation
Dense Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
M. Felsberg
F. Khan
Martin Danelljan
61
30
0
07 Oct 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
Personalized Federated Learning with Gaussian Processes
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
32
98
0
29 Jun 2021
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
Kourosh Hakhamaneshi
Pieter Abbeel
Vladimir M. Stojanović
Aditya Grover
25
10
0
02 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Deep Gaussian Processes for Few-Shot Segmentation
Deep Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
Martin Danelljan
M. Felsberg
F. Khan
VLM
17
2
0
30 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Neural fidelity warping for efficient robot morphology design
Neural fidelity warping for efficient robot morphology design
Sha Hu
Zeshi Yang
Greg Mori
47
4
0
08 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
19
26
0
22 Oct 2020
Few-shot Learning for Spatial Regression
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
30
11
0
09 Oct 2020
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
43
19
0
11 Aug 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
25
4
0
21 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
14
437
0
17 Jun 2020
TS-UCB: Improving on Thompson Sampling With Little to No Additional
  Computation
TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation
Jackie Baek
Vivek F. Farias
30
9
0
11 Jun 2020
Discovery of Self-Assembling $π$-Conjugated Peptides by Active
  Learning-Directed Coarse-Grained Molecular Simulation
Discovery of Self-Assembling πππ-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation
Kirill Shmilovich
R. Mansbach
Hythem Sidky
Olivia E. Dunne
S. Panda
J. Tovar
Andrew L. Ferguson
15
76
0
27 Jan 2020
Online tuning and light source control using a physics-informed Gaussian
  process Adi
Online tuning and light source control using a physics-informed Gaussian process Adi
A. Hanuka
J. Duris
J. Shtalenkova
Dylan Kennedy
A. Edelen
Daniel Ratner
Xiaobiao Huang
4
20
0
04 Nov 2019
The Differentiable Cross-Entropy Method
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
26
54
0
27 Sep 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
26
0
0
03 Jul 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
27
3
0
31 May 2019
Graph Convolutional Gaussian Processes
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
14
35
0
14 May 2019
Extending classical surrogate modelling to high-dimensions through
  supervised dimensionality reduction: a data-driven approach
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
23
66
0
15 Dec 2018
Benchmarking five global optimization approaches for nano-optical shape
  optimization and parameter reconstruction
Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction
Philipp‐Immanuel Schneider
Xavier Garcia Santiago
V. Soltwisch
M. Hammerschmidt
Sven Burger
C. Rockstuhl
6
88
0
18 Sep 2018
Deep Gaussian Covariance Network
Deep Gaussian Covariance Network
K. Cremanns
D. Roos
BDL
24
20
0
17 Oct 2017
Deep Kernels for Optimizing Locomotion Controllers
Deep Kernels for Optimizing Locomotion Controllers
Rika Antonova
Akshara Rai
C. Atkeson
25
45
0
27 Jul 2017
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
24
111
0
30 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
17
415
0
24 May 2017
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric P. Xing
BDL
13
104
0
27 Oct 2016
Variational Gaussian Process Auto-Encoder for Ordinal Prediction of
  Facial Action Units
Variational Gaussian Process Auto-Encoder for Ordinal Prediction of Facial Action Units
Stefanos Eleftheriadis
Ognjen Rudovic
M. Deisenroth
M. Pantic
DRL
25
28
0
16 Aug 2016
Variational Auto-encoded Deep Gaussian Processes
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
BDL
33
872
0
06 Nov 2015
Variable noise and dimensionality reduction for sparse Gaussian
  processes
Variable noise and dimensionality reduction for sparse Gaussian processes
Edward Snelson
Zoubin Ghahramani
87
79
0
27 Jun 2012
1