Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.4419
Cited By
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
18 February 2014
Julien Mairal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning"
50 / 113 papers shown
Title
It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization
Ali Behrouz
Meisam Razaviyayn
Peilin Zhong
Vahab Mirrokni
38
0
0
17 Apr 2025
Efficient and Distributed Large-Scale Point Cloud Bundle Adjustment via Majorization-Minimization
Rundong Li
Zheng Liu
Hairuo Wei
Yixi Cai
H. Li
Fu Zhang
47
0
0
26 Feb 2025
SPAM: Stochastic Proximal Point Method with Momentum Variance Reduction for Non-convex Cross-Device Federated Learning
Avetik G. Karagulyan
Egor Shulgin
Abdurakhmon Sadiev
Peter Richtárik
FedML
46
2
0
30 May 2024
Efficient algorithms for regularized Poisson Non-negative Matrix Factorization
Nathanael Perraudin
Adrien Teutrie
Cécile Hébert
G. Obozinski
27
1
0
25 Apr 2024
Stochastic optimization with arbitrary recurrent data sampling
William G. Powell
Hanbaek Lyu
29
0
0
15 Jan 2024
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
25
1
0
09 Nov 2023
Computing Approximate
ℓ
p
\ell_p
ℓ
p
Sensitivities
Swati Padmanabhan
David P. Woodruff
Qiuyi Zhang
45
0
0
07 Nov 2023
Faster Stochastic Algorithms for Minimax Optimization under Polyak--Łojasiewicz Conditions
Le‐Yu Chen
Boyuan Yao
Luo Luo
14
15
0
29 Jul 2023
On the Importance of Feature Decorrelation for Unsupervised Representation Learning in Reinforcement Learning
Hojoon Lee
Ko-tik Lee
Dongyoon Hwang
Hyunho Lee
ByungKun Lee
Jaegul Choo
SSL
OOD
20
5
0
09 Jun 2023
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Weijie Gan
S. Shoushtari
Yuyang Hu
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
20
11
0
22 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
25
5
0
23 Apr 2023
Accelerated Distributed Aggregative Optimization
Jiaxu Liu
Song Chen
Shengze Cai
Chaoyang Xu
22
6
0
17 Apr 2023
Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy
Blake E. Woodworth
Konstantin Mishchenko
Francis R. Bach
42
6
0
07 Feb 2023
Target-based Surrogates for Stochastic Optimization
J. Lavington
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Nicolas Le Roux
46
5
0
06 Feb 2023
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
32
6
0
10 Dec 2022
Reconstruction of gene regulatory network via sparse optimization
Jiashu Lou
Leyi Cui
Wenxuan Qiu
22
0
0
11 Nov 2022
Convex Clustering through MM: An Efficient Algorithm to Perform Hierarchical Clustering
Daniel J. W. Touw
P. Groenen
Y. Terada
12
3
0
03 Nov 2022
The Stochastic Proximal Distance Algorithm
Hao Jiang
Jason Xu
25
0
0
21 Oct 2022
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
11
0
0
13 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
25
2
0
12 Oct 2022
Light-weight probing of unsupervised representations for Reinforcement Learning
Wancong Zhang
Anthony GX-Chen
Vlad Sobal
Yann LeCun
Nicolas Carion
SSL
OffRL
35
13
0
25 Aug 2022
Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
Sally Dong
Haotian Jiang
Y. Lee
Swati Padmanabhan
Guanghao Ye
20
2
0
07 Aug 2022
Online Inference for Mixture Model of Streaming Graph Signals with Non-White Excitation
Yiran He
Hoi-To Wai
23
2
0
28 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
24
2
0
17 Jul 2022
On a class of geodesically convex optimization problems solved via Euclidean MM methods
Melanie Weber
S. Sra
9
4
0
22 Jun 2022
Bregman Power k-Means for Clustering Exponential Family Data
Adithya Vellal
Saptarshi Chakraborty
Jason Xu
22
6
0
22 Jun 2022
Convergence of online
k
k
k
-means
S. Dasgupta
G. Mahajan
Geelon So
13
3
0
22 Feb 2022
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
13
7
0
26 Nov 2021
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
Bugra Can
Saeed Soori
M. Dehnavi
Mert Gurbuzbalaban
32
1
0
20 Aug 2021
Improved Analysis and Rates for Variance Reduction under Without-replacement Sampling Orders
Xinmeng Huang
Kun Yuan
Xianghui Mao
W. Yin
17
12
0
25 Apr 2021
Adversarially-Trained Nonnegative Matrix Factorization
Ting Cai
Vincent Y. F. Tan
Cédric Févotte
11
6
0
10 Apr 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
30
14
0
21 Mar 2021
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
20
76
0
11 Dec 2020
Kernel k-Means, By All Means: Algorithms and Strong Consistency
Debolina Paul
Saptarshi Chakraborty
Swagatam Das
Jason Xu
13
7
0
12 Nov 2020
SGB: Stochastic Gradient Bound Method for Optimizing Partition Functions
Junchang Wang
A. Choromańska
21
0
0
03 Nov 2020
Homeomorphic-Invariance of EM: Non-Asymptotic Convergence in KL Divergence for Exponential Families via Mirror Descent
Frederik Kunstner
Raunak Kumar
Mark W. Schmidt
27
21
0
02 Nov 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
110
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
19
0
0
26 Aug 2020
NoPeek: Information leakage reduction to share activations in distributed deep learning
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
16
84
0
20 Aug 2020
Online Robust and Adaptive Learning from Data Streams
Shintaro Fukushima
Atsushi Nitanda
Kenji Yamanishi
19
3
0
23 Jul 2020
Globally-convergent Iteratively Reweighted Least Squares for Robust Regression Problems
B. Mukhoty
G. Gopakumar
Prateek Jain
Purushottam Kar
22
30
0
25 Jun 2020
Advances in Asynchronous Parallel and Distributed Optimization
By Mahmoud Assran
Arda Aytekin
Hamid Reza Feyzmahdavian
M. Johansson
Michael G. Rabbat
12
77
0
24 Jun 2020
Truncated Inference for Latent Variable Optimization Problems: Application to Robust Estimation and Learning
Christopher Zach
Huu Le
17
4
0
12 Mar 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
29
17
0
11 Feb 2020
On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions
Yossi Arjevani
Amit Daniely
Stefanie Jegelka
Hongzhou Lin
13
2
0
09 Feb 2020
Entropy Regularized Power k-Means Clustering
Saptarshi Chakraborty
Debolina Paul
Swagatam Das
Jason Xu
15
2
0
10 Jan 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
30
629
0
31 Dec 2019
Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for Python, C++, and soon more
Julien Mairal
19
22
0
17 Dec 2019
Majorization Minimization Technique for Optimally Solving Deep Dictionary Learning
Vanika Singhal
A. Majumdar
15
17
0
11 Dec 2019
Stochastic DCA for minimizing a large sum of DC functions with application to Multi-class Logistic Regression
Hoai An Le Thi
L. Minh
Phan Duy Nhat
Bach Tran
22
24
0
10 Nov 2019
1
2
3
Next