Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.4102
Cited By
Stochastic Gradient Hamiltonian Monte Carlo
17 February 2014
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Gradient Hamiltonian Monte Carlo"
50 / 137 papers shown
Title
Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection
Bang Xiang Yong
Alexandra Brintrup
UQCV
15
24
0
25 Feb 2022
Non-Volatile Memory Accelerated Posterior Estimation
A. Wood
Moshik Hershcovitch
Daniel Waddington
Sarel Cohen
Peter Chin
11
1
0
21 Feb 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
23
10
0
20 Feb 2022
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
Hao Guo
Jiyong Jin
B. Liu
FedML
11
1
0
14 Feb 2022
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications
Se Yoon Lee
17
17
0
28 Jan 2022
Maximizing information from chemical engineering data sets: Applications to machine learning
Alexander Thebelt
Johannes Wiebe
Jan Kronqvist
Calvin Tsay
Ruth Misener
AI4CE
32
68
0
25 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
12
13
0
22 Dec 2021
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
19
2
0
12 Dec 2021
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
22
16
0
09 Dec 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
Unsupervised PET Reconstruction from a Bayesian Perspective
Chenyu Shen
Wenjun Xia
H. Ye
Mingzheng Hou
Hu Chen
Yan Liu
Jiliu Zhou
Yi Zhang
31
3
0
29 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
29
9
0
08 Oct 2021
Relative Entropy Gradient Sampler for Unnormalized Distributions
Xingdong Feng
Yuan Gao
Jian Huang
Yuling Jiao
Xu Liu
28
7
0
06 Oct 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
35
100
0
14 Sep 2021
Bayesian forecast combination using time-varying features
Li Li
Yanfei Kang
Feng Li
AI4TS
19
14
0
04 Aug 2021
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
17
17
0
30 Jul 2021
Bayesian Autoencoders for Drift Detection in Industrial Environments
Bang Xiang Yong
Yasmin Fathy
Alexandra Brintrup
UQCV
8
8
0
28 Jul 2021
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
51
4
0
15 Jul 2021
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
8
19
0
21 Jun 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
27
27
0
21 Jun 2021
Differentially Private Hamiltonian Monte Carlo
Ossi Raisa
A. Koskela
Antti Honkela
11
6
0
17 Jun 2021
Post-hoc loss-calibration for Bayesian neural networks
Meet P. Vadera
S. Ghosh
Kenney Ng
Benjamin M. Marlin
UQCV
BDL
28
7
0
13 Jun 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
22
23
0
11 Jun 2021
Learning Functional Priors and Posteriors from Data and Physics
Xuhui Meng
Liu Yang
Zhiping Mao
J. Ferrandis
George Karniadakis
AI4CE
27
61
0
08 Jun 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
20
17
0
06 May 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
16
109
0
08 Mar 2021
The shifted ODE method for underdamped Langevin MCMC
James Foster
Terry Lyons
Harald Oberhauser
11
16
0
10 Jan 2021
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
222
0
20 Nov 2020
Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks
Theodoros Tsiligkaridis
UQCV
22
7
0
19 Oct 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
34
27
0
19 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
11
22
0
15 Oct 2020
Set Prediction without Imposing Structure as Conditional Density Estimation
David W. Zhang
Gertjan J. Burghouts
Cees G. M. Snoek
43
17
0
08 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
14
8
0
02 Oct 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
16
16
0
08 Jul 2020
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
21
199
0
22 Jun 2020
Predictive Coding Approximates Backprop along Arbitrary Computation Graphs
Beren Millidge
Alexander Tschantz
Christopher L. Buckley
16
118
0
07 Jun 2020
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
11
24
0
23 Apr 2020
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
4
0
0
02 Mar 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
35
17
0
13 Feb 2020
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
21
13
0
26 Jun 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
19
14
0
27 May 2019
Coordination and Trajectory Prediction for Vehicle Interactions via Bayesian Generative Modeling
Jiachen Li
Hengbo Ma
Wei Zhan
M. Tomizuka
10
24
0
02 May 2019
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp
Mitch Hill
Tian Han
Song-Chun Zhu
Ying Nian Wu
19
151
0
29 Mar 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
17
10
0
25 Mar 2019
Bayesian Cycle-Consistent Generative Adversarial Networks via Marginalizing Latent Sampling
Haoran You
Yu Cheng
Tianheng Cheng
Chunliang Li
Pan Zhou
GAN
13
3
0
19 Nov 2018
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
13
13
0
16 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
29
16
0
09 Oct 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
10
46
0
05 Sep 2018
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
11
96
0
14 Jun 2018
Previous
1
2
3
Next