ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.4102
  4. Cited By
Stochastic Gradient Hamiltonian Monte Carlo

Stochastic Gradient Hamiltonian Monte Carlo

17 February 2014
Tianqi Chen
E. Fox
Carlos Guestrin
    BDL
ArXivPDFHTML

Papers citing "Stochastic Gradient Hamiltonian Monte Carlo"

50 / 137 papers shown
Title
Bayesian autoencoders with uncertainty quantification: Towards
  trustworthy anomaly detection
Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection
Bang Xiang Yong
Alexandra Brintrup
UQCV
15
24
0
25 Feb 2022
Non-Volatile Memory Accelerated Posterior Estimation
Non-Volatile Memory Accelerated Posterior Estimation
A. Wood
Moshik Hershcovitch
Daniel Waddington
Sarel Cohen
Peter Chin
11
1
0
21 Feb 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
23
10
0
20 Feb 2022
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
Hao Guo
Jiyong Jin
B. Liu
FedML
11
1
0
14 Feb 2022
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview,
  Implementation, and Applications
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications
Se Yoon Lee
17
17
0
28 Jan 2022
Maximizing information from chemical engineering data sets: Applications
  to machine learning
Maximizing information from chemical engineering data sets: Applications to machine learning
Alexander Thebelt
Johannes Wiebe
Jan Kronqvist
Calvin Tsay
Ruth Misener
AI4CE
32
68
0
25 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
12
13
0
22 Dec 2021
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
19
2
0
12 Dec 2021
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
22
16
0
09 Dec 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
Unsupervised PET Reconstruction from a Bayesian Perspective
Unsupervised PET Reconstruction from a Bayesian Perspective
Chenyu Shen
Wenjun Xia
H. Ye
Mingzheng Hou
Hu Chen
Yan Liu
Jiliu Zhou
Yi Zhang
31
3
0
29 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
29
9
0
08 Oct 2021
Relative Entropy Gradient Sampler for Unnormalized Distributions
Relative Entropy Gradient Sampler for Unnormalized Distributions
Xingdong Feng
Yuan Gao
Jian Huang
Yuling Jiao
Xu Liu
28
7
0
06 Oct 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
35
100
0
14 Sep 2021
Bayesian forecast combination using time-varying features
Bayesian forecast combination using time-varying features
Li Li
Yanfei Kang
Feng Li
AI4TS
19
14
0
04 Aug 2021
Uniform minorization condition and convergence bounds for
  discretizations of kinetic Langevin dynamics
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
17
17
0
30 Jul 2021
Bayesian Autoencoders for Drift Detection in Industrial Environments
Bayesian Autoencoders for Drift Detection in Industrial Environments
Bang Xiang Yong
Yasmin Fathy
Alexandra Brintrup
UQCV
8
8
0
28 Jul 2021
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian
  Monte Carlo
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
51
4
0
15 Jul 2021
Deep Gaussian Processes: A Survey
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
8
19
0
21 Jun 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
27
27
0
21 Jun 2021
Differentially Private Hamiltonian Monte Carlo
Differentially Private Hamiltonian Monte Carlo
Ossi Raisa
A. Koskela
Antti Honkela
11
6
0
17 Jun 2021
Post-hoc loss-calibration for Bayesian neural networks
Post-hoc loss-calibration for Bayesian neural networks
Meet P. Vadera
S. Ghosh
Kenney Ng
Benjamin M. Marlin
UQCV
BDL
28
7
0
13 Jun 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in
  the Cold Posterior Effect
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
22
23
0
11 Jun 2021
Learning Functional Priors and Posteriors from Data and Physics
Learning Functional Priors and Posteriors from Data and Physics
Xuhui Meng
Liu Yang
Zhiping Mao
J. Ferrandis
George Karniadakis
AI4CE
27
61
0
08 Jun 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
20
17
0
06 May 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
16
109
0
08 Mar 2021
The shifted ODE method for underdamped Langevin MCMC
The shifted ODE method for underdamped Langevin MCMC
James Foster
Terry Lyons
Harald Oberhauser
11
16
0
10 Jan 2021
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
222
0
20 Nov 2020
Failure Prediction by Confidence Estimation of Uncertainty-Aware
  Dirichlet Networks
Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks
Theodoros Tsiligkaridis
UQCV
22
7
0
19 Oct 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
34
27
0
19 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
  and Learning
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
11
22
0
15 Oct 2020
Set Prediction without Imposing Structure as Conditional Density
  Estimation
Set Prediction without Imposing Structure as Conditional Density Estimation
David W. Zhang
Gertjan J. Burghouts
Cees G. M. Snoek
43
17
0
08 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC
  via Variance Reduction
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
14
8
0
02 Oct 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
16
16
0
08 Jul 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
21
199
0
22 Jun 2020
Predictive Coding Approximates Backprop along Arbitrary Computation
  Graphs
Predictive Coding Approximates Backprop along Arbitrary Computation Graphs
Beren Millidge
Alexander Tschantz
Christopher L. Buckley
16
118
0
07 Jun 2020
Federated Stochastic Gradient Langevin Dynamics
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
11
24
0
23 Apr 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
4
0
0
02 Mar 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
35
17
0
13 Feb 2020
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and
  Training of Neural Nets
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
21
13
0
26 Jun 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
19
14
0
27 May 2019
Coordination and Trajectory Prediction for Vehicle Interactions via
  Bayesian Generative Modeling
Coordination and Trajectory Prediction for Vehicle Interactions via Bayesian Generative Modeling
Jiachen Li
Hengbo Ma
Wei Zhan
M. Tomizuka
10
24
0
02 May 2019
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based
  Models
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp
Mitch Hill
Tian Han
Song-Chun Zhu
Ying Nian Wu
19
151
0
29 Mar 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
17
10
0
25 Mar 2019
Bayesian Cycle-Consistent Generative Adversarial Networks via
  Marginalizing Latent Sampling
Bayesian Cycle-Consistent Generative Adversarial Networks via Marginalizing Latent Sampling
Haoran You
Yu Cheng
Tianheng Cheng
Chunliang Li
Pan Zhou
GAN
13
3
0
19 Nov 2018
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
13
13
0
16 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
29
16
0
09 Oct 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
10
46
0
05 Sep 2018
Inference in Deep Gaussian Processes using Stochastic Gradient
  Hamiltonian Monte Carlo
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
11
96
0
14 Jun 2018
Previous
123
Next