Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.4102
Cited By
Stochastic Gradient Hamiltonian Monte Carlo
17 February 2014
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Gradient Hamiltonian Monte Carlo"
50 / 137 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
47
0
0
08 May 2025
Extended Fiducial Inference for Individual Treatment Effects via Deep Neural Networks
Sehwan Kim
F. Liang
FedML
48
0
0
04 May 2025
A Langevin sampling algorithm inspired by the Adam optimizer
B. Leimkuhler
René Lohmann
P. Whalley
74
0
0
26 Apr 2025
3D Student Splatting and Scooping
Jialin Zhu
Jiangbei Yue
Feixiang He
He-Nan Wang
3DGS
62
0
0
13 Mar 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Kevin Raina
UQCV
BDL
UD
PER
64
0
0
24 Feb 2025
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
73
0
0
17 Feb 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
80
3
0
28 Jan 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
56
0
0
03 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
41
4
0
14 Oct 2024
Multi-Fidelity Bayesian Neural Network for Uncertainty Quantification in Transonic Aerodynamic Loads
Andrea Vaiuso
Gabriele Immordino
Marcello Righi
A. Ronch
AI4CE
40
0
0
08 Jul 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
24
3
0
14 May 2024
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
24
0
0
05 Mar 2024
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
24
5
0
27 Dec 2023
Quantum Langevin Dynamics for Optimization
Zherui Chen
Yuchen Lu
Hao Wang
Yizhou Liu
Tongyang Li
AI4CE
18
9
0
27 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
32
0
0
21 Nov 2023
Spatial Bayesian Neural Networks
A. Zammit‐Mangion
Michael D. Kaminski
Ba-Hien Tran
Maurizio Filippone
Noel Cressie
BDL
10
7
0
16 Nov 2023
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
13
4
0
25 Oct 2023
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian Inference
Siqi Kou
Lei Gan
Dequan Wang
Chongxuan Li
Zhijie Deng
BDL
DiffM
21
7
0
17 Oct 2023
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ Segmentation
Jadie Adams
Shireen Elhabian
UQCV
15
5
0
15 Aug 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
51
1
0
26 May 2023
Integrating Uncertainty into Neural Network-based Speech Enhancement
Hu Fang
Dennis Becker
S. Wermter
Timo Gerkmann
UQCV
24
2
0
15 May 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
31
3
0
05 Apr 2023
Particle Mean Field Variational Bayes
Minh-Ngoc Tran
Paco Tseng
Robert Kohn
24
3
0
24 Mar 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
S. Sisson
11
8
0
20 Feb 2023
Transfer Learning for Bayesian Optimization: A Survey
Tianyi Bai
Yang Li
Yu Shen
Xinyi Zhang
Wentao Zhang
Bin Cui
BDL
27
29
0
12 Feb 2023
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification
A. Alberts
Ilias Bilionis
32
12
0
18 Jan 2023
Do Bayesian Variational Autoencoders Know What They Don't Know?
Misha Glazunov
Apostolis Zarras
UQCV
BDL
20
5
0
29 Dec 2022
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving
Liang Peng
Boqi Li
Wen-Hui Yu
Kailiang Yang
Wenbo Shao
Hong Wang
AAML
23
24
0
08 Nov 2022
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
22
1
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
42
19
0
23 Oct 2022
On Investigating the Conservative Property of Score-Based Generative Models
Chen-Hao Chao
Wei-Fang Sun
Bo Wun Cheng
Chun-Yi Lee
25
10
0
26 Sep 2022
Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A Survey
S. Sun
AI4CE
23
10
0
08 Sep 2022
Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for Attribute-Based Medical Image Diagnosis
Gangming Zhao
Quanlong Feng
Chaoqi Chen
Zhen Zhou
Yizhou Yu
32
31
0
19 Aug 2022
Momentum Transformer: Closing the Performance Gap Between Self-attention and Its Linearization
T. Nguyen
Richard G. Baraniuk
Robert M. Kirby
Stanley J. Osher
Bao Wang
21
9
0
01 Aug 2022
Improving Task-free Continual Learning by Distributionally Robust Memory Evolution
Zhenyi Wang
Li Shen
Le Fang
Qiuling Suo
Tiehang Duan
Mingchen Gao
OOD
19
38
0
15 Jul 2022
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
Uddeshya Upadhyay
Shyamgopal Karthik
Yanbei Chen
Massimiliano Mancini
Zeynep Akata
UQCV
BDL
21
22
0
14 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
19
30
0
13 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
22
9
0
05 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
25
34
0
29 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
25
28
0
17 Jun 2022
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
12
11
0
15 Jun 2022
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDL
UQCV
24
2
0
12 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CML
BDL
41
19
0
03 Jun 2022
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
38
10
0
17 May 2022
Scalable computation of prediction intervals for neural networks via matrix sketching
Alexander Fishkov
Maxim Panov
UQCV
20
1
0
06 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Defending Black-box Skeleton-based Human Activity Classifiers
He-Nan Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
43
10
0
09 Mar 2022
1
2
3
Next