Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1312.6114
Cited By
Auto-Encoding Variational Bayes
20 December 2013
Diederik P. Kingma
Max Welling
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Auto-Encoding Variational Bayes"
42 / 3,542 papers shown
Title
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
36
371
0
16 Nov 2015
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OOD
DiffM
GAN
28
296
0
16 Nov 2015
Black-box
α
α
α
-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
23
137
0
10 Nov 2015
Generating Images from Captions with Attention
Elman Mansimov
Emilio Parisotto
Jimmy Lei Ba
Ruslan Salakhutdinov
VLM
55
450
0
09 Nov 2015
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
28
335
0
07 Nov 2015
The Variational Fair Autoencoder
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
51
632
0
03 Nov 2015
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark Schmidt
Masashi Sugiyama
33
49
0
31 Oct 2015
Learning Continuous Control Policies by Stochastic Value Gradients
N. Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
66
558
0
30 Oct 2015
Learning FRAME Models Using CNN Filters
Yang Lu
Song-Chun Zhu
Ying Nian Wu
GAN
28
66
0
28 Sep 2015
Deep Temporal Sigmoid Belief Networks for Sequence Modeling
Zhe Gan
Chunyuan Li
Ricardo Henao
David Carlson
Lawrence Carin
BDL
32
85
0
23 Sep 2015
Learning Wake-Sleep Recurrent Attention Models
Jimmy Ba
Roger C. Grosse
Ruslan Salakhutdinov
B. Frey
BDL
32
65
0
22 Sep 2015
Fast Second-Order Stochastic Backpropagation for Variational Inference
Kai Fan
Ziteng Wang
J. Beck
James T. Kwok
Katherine A. Heller
ODL
BDL
DRL
23
45
0
09 Sep 2015
Stochastic gradient variational Bayes for gamma approximating distributions
David A. Knowles
BDL
30
50
0
04 Sep 2015
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
101
1,236
0
01 Sep 2015
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
Emily L. Denton
Soumith Chintala
Arthur Szlam
Rob Fergus
GAN
47
2,241
0
18 Jun 2015
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
41
391
0
17 Jun 2015
Bayesian representation learning with oracle constraints
Theofanis Karaletsos
Serge J. Belongie
Gunnar Rätsch
BDL
35
92
0
16 Jun 2015
Data Generation as Sequential Decision Making
Philip Bachman
Doina Precup
30
57
0
10 Jun 2015
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
37
232
0
10 Jun 2015
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
24
145
0
10 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
69
1,494
0
08 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
42
1,244
0
07 Jun 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
213
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Appendix
Y. Gal
Zoubin Ghahramani
BDL
24
64
0
06 Jun 2015
Automatic Relevance Determination For Deep Generative Models
Theofanis Karaletsos
Gunnar Rätsch
33
8
0
28 May 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
110
4,114
0
21 May 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
38
1,874
0
20 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
115
6,650
0
12 Mar 2015
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
50
929
0
11 Mar 2015
Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
Y. Gal
Yutian Chen
Zoubin Ghahramani
SyDa
45
41
0
07 Mar 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
75
2,754
0
20 Feb 2015
DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor
Ivo Danihelka
Alex Graves
Danilo Jimenez Rezende
Daan Wierstra
GAN
DRL
79
1,957
0
16 Feb 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
163
10,018
0
10 Feb 2015
Generative Class-conditional Autoencoders
Jan Rudy
Graham W. Taylor
DRL
31
7
0
22 Dec 2014
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
95
149,056
0
22 Dec 2014
Learning Stochastic Recurrent Networks
Justin Bayer
Christian Osendorfer
BDL
40
273
0
27 Nov 2014
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
47
25
0
08 Sep 2014
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation
Yoshua Bengio
53
181
0
29 Jul 2014
Techniques for Learning Binary Stochastic Feedforward Neural Networks
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
65
126
0
11 Jun 2014
Structured Stochastic Variational Inference
Matthew D. Hoffman
David M. Blei
BDL
42
87
0
16 Apr 2014
Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
Diederik P. Kingma
Max Welling
BDL
44
61
0
03 Feb 2014
On Using Control Variates with Stochastic Approximation for Variational Bayes and its Connection to Stochastic Linear Regression
Tim Salimans
David A. Knowles
BDL
48
33
0
06 Jan 2014
Previous
1
2
3
...
69
70
71