ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.6114
  4. Cited By
Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes

20 December 2013
Diederik P. Kingma
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Auto-Encoding Variational Bayes"

42 / 3,542 papers shown
Title
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
36
371
0
16 Nov 2015
How (not) to Train your Generative Model: Scheduled Sampling,
  Likelihood, Adversary?
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OOD
DiffM
GAN
28
296
0
16 Nov 2015
Black-box $α$-divergence Minimization
Black-box ααα-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
23
137
0
10 Nov 2015
Generating Images from Captions with Attention
Generating Images from Captions with Attention
Elman Mansimov
Emilio Parisotto
Jimmy Lei Ba
Ruslan Salakhutdinov
VLM
55
450
0
09 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
28
335
0
07 Nov 2015
The Variational Fair Autoencoder
The Variational Fair Autoencoder
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
51
632
0
03 Nov 2015
Faster Stochastic Variational Inference using Proximal-Gradient Methods
  with General Divergence Functions
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark Schmidt
Masashi Sugiyama
33
49
0
31 Oct 2015
Learning Continuous Control Policies by Stochastic Value Gradients
Learning Continuous Control Policies by Stochastic Value Gradients
N. Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
66
558
0
30 Oct 2015
Learning FRAME Models Using CNN Filters
Learning FRAME Models Using CNN Filters
Yang Lu
Song-Chun Zhu
Ying Nian Wu
GAN
28
66
0
28 Sep 2015
Deep Temporal Sigmoid Belief Networks for Sequence Modeling
Deep Temporal Sigmoid Belief Networks for Sequence Modeling
Zhe Gan
Chunyuan Li
Ricardo Henao
David Carlson
Lawrence Carin
BDL
32
85
0
23 Sep 2015
Learning Wake-Sleep Recurrent Attention Models
Learning Wake-Sleep Recurrent Attention Models
Jimmy Ba
Roger C. Grosse
Ruslan Salakhutdinov
B. Frey
BDL
32
65
0
22 Sep 2015
Fast Second-Order Stochastic Backpropagation for Variational Inference
Fast Second-Order Stochastic Backpropagation for Variational Inference
Kai Fan
Ziteng Wang
J. Beck
James T. Kwok
Katherine A. Heller
ODL
BDL
DRL
23
45
0
09 Sep 2015
Stochastic gradient variational Bayes for gamma approximating
  distributions
Stochastic gradient variational Bayes for gamma approximating distributions
David A. Knowles
BDL
30
50
0
04 Sep 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
101
1,236
0
01 Sep 2015
Deep Generative Image Models using a Laplacian Pyramid of Adversarial
  Networks
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
Emily L. Denton
Soumith Chintala
Arthur Szlam
Rob Fergus
GAN
47
2,241
0
18 Jun 2015
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
41
391
0
17 Jun 2015
Bayesian representation learning with oracle constraints
Bayesian representation learning with oracle constraints
Theofanis Karaletsos
Serge J. Belongie
Gunnar Rätsch
BDL
35
92
0
16 Jun 2015
Data Generation as Sequential Decision Making
Data Generation as Sequential Decision Making
Philip Bachman
Doina Precup
30
57
0
10 Jun 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
37
232
0
10 Jun 2015
Neural Adaptive Sequential Monte Carlo
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
24
145
0
10 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
69
1,494
0
08 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
42
1,244
0
07 Jun 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
213
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Appendix
Dropout as a Bayesian Approximation: Appendix
Y. Gal
Zoubin Ghahramani
BDL
24
64
0
06 Jun 2015
Automatic Relevance Determination For Deep Generative Models
Automatic Relevance Determination For Deep Generative Models
Theofanis Karaletsos
Gunnar Rätsch
33
8
0
28 May 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
110
4,114
0
21 May 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
38
1,874
0
20 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
115
6,650
0
12 Mar 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
50
929
0
11 Mar 2015
Latent Gaussian Processes for Distribution Estimation of Multivariate
  Categorical Data
Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
Y. Gal
Yutian Chen
Zoubin Ghahramani
SyDa
45
41
0
07 Mar 2015
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
75
2,754
0
20 Feb 2015
DRAW: A Recurrent Neural Network For Image Generation
DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor
Ivo Danihelka
Alex Graves
Danilo Jimenez Rezende
Daan Wierstra
GAN
DRL
79
1,957
0
16 Feb 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual
  Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
163
10,018
0
10 Feb 2015
Generative Class-conditional Autoencoders
Generative Class-conditional Autoencoders
Jan Rudy
Graham W. Taylor
DRL
31
7
0
22 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
95
149,056
0
22 Dec 2014
Learning Stochastic Recurrent Networks
Learning Stochastic Recurrent Networks
Justin Bayer
Christian Osendorfer
BDL
40
273
0
27 Nov 2014
Variational Inference for Uncertainty on the Inputs of Gaussian Process
  Models
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
47
25
0
08 Sep 2014
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via
  Target Propagation
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation
Yoshua Bengio
53
181
0
29 Jul 2014
Techniques for Learning Binary Stochastic Feedforward Neural Networks
Techniques for Learning Binary Stochastic Feedforward Neural Networks
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
65
126
0
11 Jun 2014
Structured Stochastic Variational Inference
Structured Stochastic Variational Inference
Matthew D. Hoffman
David M. Blei
BDL
42
87
0
16 Apr 2014
Efficient Gradient-Based Inference through Transformations between Bayes
  Nets and Neural Nets
Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
Diederik P. Kingma
Max Welling
BDL
44
61
0
03 Feb 2014
On Using Control Variates with Stochastic Approximation for Variational
  Bayes and its Connection to Stochastic Linear Regression
On Using Control Variates with Stochastic Approximation for Variational Bayes and its Connection to Stochastic Linear Regression
Tim Salimans
David A. Knowles
BDL
48
33
0
06 Jan 2014
Previous
123...697071