ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.07765
23
8

Automatic Relevance Determination For Deep Generative Models

28 May 2015
Theofanis Karaletsos
Gunnar Rätsch
ArXivPDFHTML
Abstract

A recurring problem when building probabilistic latent variable models is regularization and model selection, for instance, the choice of the dimensionality of the latent space. In the context of belief networks with latent variables, this problem has been adressed with Automatic Relevance Determination (ARD) employing Monte Carlo inference. We present a variational inference approach to ARD for Deep Generative Models using doubly stochastic variational inference to provide fast and scalable learning. We show empirical results on a standard dataset illustrating the effects of contracting the latent space automatically. We show that the resulting latent representations are significantly more compact without loss of expressive power of the learned models.

View on arXiv
Comments on this paper