ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.6114
  4. Cited By
Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes

20 December 2013
Diederik P. Kingma
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Auto-Encoding Variational Bayes"

50 / 3,234 papers shown
Title
AdaGAN: Boosting Generative Models
AdaGAN: Boosting Generative Models
Ilya O. Tolstikhin
Sylvain Gelly
Olivier Bousquet
Carl-Johann Simon-Gabriel
Bernhard Schölkopf
GAN
27
226
0
09 Jan 2017
Loss is its own Reward: Self-Supervision for Reinforcement Learning
Loss is its own Reward: Self-Supervision for Reinforcement Learning
Evan Shelhamer
Parsa Mahmoudieh
Max Argus
Trevor Darrell
SSL
24
186
0
21 Dec 2016
Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic
  Images
Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images
Aron Yu
Kristen Grauman
34
149
0
19 Dec 2016
Learning Residual Images for Face Attribute Manipulation
Learning Residual Images for Face Attribute Manipulation
Wei Shen
Rujie Liu
CVBM
GAN
23
252
0
16 Dec 2016
A Survey of Inductive Biases for Factorial Representation-Learning
A Survey of Inductive Biases for Factorial Representation-Learning
Karl Ridgeway
DRL
CML
29
76
0
15 Dec 2016
Disentangling Space and Time in Video with Hierarchical Variational
  Auto-encoders
Disentangling Space and Time in Video with Hierarchical Variational Auto-encoders
Will Grathwohl
Aaron Wilson
DRL
24
21
0
14 Dec 2016
Stacked Generative Adversarial Networks
Stacked Generative Adversarial Networks
Xun Huang
Yixuan Li
Omid Poursaeed
J. Hopcroft
Serge J. Belongie
GAN
22
458
0
13 Dec 2016
ExtremeWeather: A large-scale climate dataset for semi-supervised
  detection, localization, and understanding of extreme weather events
ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events
Evan Racah
Christopher Beckham
Tegan Maharaj
Samira Ebrahimi Kahou
P. Prabhat
C. Pal
19
18
0
07 Dec 2016
Learning Diverse Image Colorization
Learning Diverse Image Colorization
Aditya Deshpande
Jiajun Lu
Mao-Chuang Yeh
Min Jin Chong
David A. Forsyth
GAN
19
192
0
06 Dec 2016
A Probabilistic Framework for Deep Learning
A Probabilistic Framework for Deep Learning
Ankit B. Patel
M. T. Nguyen
Richard G. Baraniuk
BDL
31
67
0
06 Dec 2016
Message Passing Multi-Agent GANs
Message Passing Multi-Agent GANs
Arna Ghosh
Viveka Kulharia
Vinay P. Namboodiri
AI4CE
GAN
23
18
0
05 Dec 2016
End-to-end Learning of Driving Models from Large-scale Video Datasets
End-to-end Learning of Driving Models from Large-scale Video Datasets
Huazhe Xu
Yang Gao
Feng Yu
Trevor Darrell
44
821
0
04 Dec 2016
Scribbler: Controlling Deep Image Synthesis with Sketch and Color
Scribbler: Controlling Deep Image Synthesis with Sketch and Color
Patsorn Sangkloy
Jingwan Lu
Chen Fang
Feng Yu
James Hays
GAN
DiffM
29
497
0
02 Dec 2016
Learning Shape Abstractions by Assembling Volumetric Primitives
Learning Shape Abstractions by Assembling Volumetric Primitives
Shubham Tulsiani
Hao Su
Leonidas J. Guibas
Alexei A. Efros
Jitendra Malik
24
358
0
01 Dec 2016
Learning to Generate Images of Outdoor Scenes from Attributes and
  Semantic Layouts
Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
Levent Karacan
Zeynep Akata
Aykut Erdem
Erkut Erdem
GAN
36
186
0
01 Dec 2016
Two Methods For Wild Variational Inference
Two Methods For Wild Variational Inference
Qiang Liu
Yihao Feng
BDL
32
19
0
30 Nov 2016
Sync-DRAW: Automatic Video Generation using Deep Recurrent Attentive
  Architectures
Sync-DRAW: Automatic Video Generation using Deep Recurrent Attentive Architectures
Gaurav Mittal
Tanya Marwah
V. Balasubramanian
VGen
DiffM
38
67
0
30 Nov 2016
Exploration for Multi-task Reinforcement Learning with Deep Generative
  Models
Exploration for Multi-task Reinforcement Learning with Deep Generative Models
Sai Praveen Bangaru
J. S. Suhas
Balaraman Ravindran
21
7
0
29 Nov 2016
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel
  Prediction
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
SSL
DRL
31
666
0
29 Nov 2016
Robust Variational Inference
Robust Variational Inference
Michael Figurnov
Kirill Struminsky
Dmitry Vetrov
BDL
DRL
AAML
16
1
0
28 Nov 2016
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Chongxuan Li
Jun Zhu
Bo Zhang
AI4CE
32
42
0
22 Nov 2016
Variational Graph Auto-Encoders
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
21
3,520
0
21 Nov 2016
Semi-Supervised Learning with Context-Conditional Generative Adversarial
  Networks
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
Emily L. Denton
Sam Gross
Rob Fergus
GAN
27
150
0
19 Nov 2016
Associative Adversarial Networks
Associative Adversarial Networks
Tarik Arici
Asli Celikyilmaz
GAN
34
17
0
18 Nov 2016
Fast Non-Parametric Tests of Relative Dependency and Similarity
Fast Non-Parametric Tests of Relative Dependency and Similarity
Wacha Bounliphone
Eugene Belilovsky
A. Tenenhaus
Ioannis Antonoglou
Arthur Gretton
Matthew B. Blashcko
31
1
0
17 Nov 2016
Semantic Regularisation for Recurrent Image Annotation
Semantic Regularisation for Recurrent Image Annotation
Feng Liu
Tao Xiang
Timothy M. Hospedales
Wankou Yang
Changyin Sun
34
103
0
16 Nov 2016
Deep Variational Inference Without Pixel-Wise Reconstruction
Deep Variational Inference Without Pixel-Wise Reconstruction
Siddharth Agrawal
Ambedkar Dukkipati
DRL
3DV
BDL
30
13
0
16 Nov 2016
Variational Deep Embedding: An Unsupervised and Generative Approach to
  Clustering
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
Zhuxi Jiang
Yin Zheng
Huachun Tan
Bangsheng Tang
Hanning Zhou
BDL
DRL
24
723
0
16 Nov 2016
On the Quantitative Analysis of Decoder-Based Generative Models
On the Quantitative Analysis of Decoder-Based Generative Models
Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger C. Grosse
GAN
22
223
0
14 Nov 2016
Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
127
4,535
0
13 Nov 2016
Disentangling factors of variation in deep representations using
  adversarial training
Disentangling factors of variation in deep representations using adversarial training
Michaël Mathieu
Jun Zhao
Pablo Sprechmann
Aditya A. Ramesh
Yann LeCun
DRL
CML
53
489
0
10 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Unrolled Generative Adversarial Networks
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
59
1,001
0
07 Nov 2016
DeepCoder: Learning to Write Programs
DeepCoder: Learning to Write Programs
Matej Balog
Alexander L. Gaunt
Marc Brockschmidt
Sebastian Nowozin
Daniel Tarlow
AIMat
NAI
30
566
0
07 Nov 2016
Joint Multimodal Learning with Deep Generative Models
Joint Multimodal Learning with Deep Generative Models
Masahiro Suzuki
Kotaro Nakayama
Y. Matsuo
DRL
GAN
35
222
0
07 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
38
118
0
06 Nov 2016
TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency
TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency
Adji Bousso Dieng
Chong-Jun Wang
Jianfeng Gao
John Paisley
21
243
0
05 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
24
2,508
0
02 Nov 2016
Variational Inference via $χ$-Upper Bound Minimization
Variational Inference via χχχ-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
81
36
0
01 Nov 2016
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
52
142
0
31 Oct 2016
Reparameterization Gradients through Acceptance-Rejection Sampling
  Algorithms
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
29
107
0
18 Oct 2016
Deep Identity-aware Transfer of Facial Attributes
Deep Identity-aware Transfer of Facial Attributes
Mu Li
W. Zuo
David C. Zhang
CVBM
35
149
0
18 Oct 2016
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process
  Models
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GP
BDL
16
54
0
18 Oct 2016
Learning and Transfer of Modulated Locomotor Controllers
Learning and Transfer of Modulated Locomotor Controllers
N. Heess
Greg Wayne
Yuval Tassa
Timothy Lillicrap
Martin Riedmiller
David Silver
24
207
0
17 Oct 2016
Amortised MAP Inference for Image Super-resolution
Amortised MAP Inference for Image Super-resolution
C. Sønderby
Jose Caballero
Lucas Theis
Wenzhe Shi
Ferenc Huszár
41
433
0
14 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
143
0
14 Oct 2016
Voice Conversion from Non-parallel Corpora Using Variational
  Auto-encoder
Voice Conversion from Non-parallel Corpora Using Variational Auto-encoder
Chin-Cheng Hsu
Hsin-Te Hwang
Yi-Chiao Wu
Yu Tsao
H. Wang
34
299
0
13 Oct 2016
Learning What and Where to Draw
Learning What and Where to Draw
Scott E. Reed
Zeynep Akata
S. Mohan
Samuel Tenka
Bernt Schiele
Honglak Lee
DRL
GAN
30
618
0
08 Oct 2016
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
76
2,889
0
07 Oct 2016
Neural Structural Correspondence Learning for Domain Adaptation
Neural Structural Correspondence Learning for Domain Adaptation
Yftah Ziser
Roi Reichart
DRL
16
107
0
05 Oct 2016
Previous
123...6162636465
Next