ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.4780
  4. Cited By
Asymptotically Exact, Embarrassingly Parallel MCMC

Asymptotically Exact, Embarrassingly Parallel MCMC

19 November 2013
W. Neiswanger
Chong-Jun Wang
Eric P. Xing
    FedML
ArXivPDFHTML

Papers citing "Asymptotically Exact, Embarrassingly Parallel MCMC"

50 / 123 papers shown
Title
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
24
37
0
23 May 2019
Embarrassingly parallel MCMC using deep invertible transformations
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
9
18
0
11 Mar 2019
ProBO: Versatile Bayesian Optimization Using Any Probabilistic
  Programming Language
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
W. Neiswanger
Kirthevasan Kandasamy
Barnabás Póczós
J. Schneider
Eric P. Xing
28
17
0
31 Jan 2019
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large
  Datasets
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets
R. Cornish
Paul Vanetti
Alexandre Bouchard-Coté
George Deligiannidis
Arnaud Doucet
42
16
0
28 Jan 2019
Communication Efficient Parallel Algorithms for Optimization on
  Manifolds
Communication Efficient Parallel Algorithms for Optimization on Manifolds
B. Saparbayeva
M. Zhang
Lizhen Lin
11
4
0
26 Oct 2018
Toward Understanding the Impact of Staleness in Distributed Machine
  Learning
Toward Understanding the Impact of Staleness in Distributed Machine Learning
Wei-Ming Dai
Yi Zhou
Nanqing Dong
H. M. Zhang
Eric P. Xing
17
79
0
08 Oct 2018
Global consensus Monte Carlo
Global consensus Monte Carlo
Lewis J. Rendell
A. M. Johansen
Anthony Lee
N. Whiteley
24
39
0
24 Jul 2018
Subsampling MCMC - An introduction for the survey statistician
Subsampling MCMC - An introduction for the survey statistician
M. Quiroz
M. Villani
Robert Kohn
Minh-Ngoc Tran
Khue-Dung Dang
14
23
0
23 Jul 2018
Quasi Markov Chain Monte Carlo Methods
Quasi Markov Chain Monte Carlo Methods
Tobias Schwedes
B. Calderhead
11
6
0
29 Jun 2018
Adaptive MCMC via Combining Local Samplers
Adaptive MCMC via Combining Local Samplers
K. Shaloudegi
András Gyorgy
32
1
0
11 Jun 2018
Scalable Bayesian Nonparametric Clustering and Classification
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
17
26
0
07 Jun 2018
Method G: Uncertainty Quantification for Distributed Data Problems using
  Generalized Fiducial Inference
Method G: Uncertainty Quantification for Distributed Data Problems using Generalized Fiducial Inference
Randy C. S. Lai
Jan Hannig
Thomas C. M. Lee
FedML
14
3
0
18 May 2018
Interdependent Gibbs Samplers
Interdependent Gibbs Samplers
Mark Kozdoba
Shie Mannor
9
0
0
11 Apr 2018
Accelerating MCMC Algorithms
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
22
140
0
08 Apr 2018
Divide and Recombine for Large and Complex Data: Model Likelihood
  Functions using MCMC
Divide and Recombine for Large and Complex Data: Model Likelihood Functions using MCMC
Qi Liu
A. Bhadra
W. Cleveland
21
0
0
15 Jan 2018
Parallel Markov Chain Monte Carlo for Bayesian Hierarchical Models with
  Big Data, in Two Stages
Parallel Markov Chain Monte Carlo for Bayesian Hierarchical Models with Big Data, in Two Stages
Zheng Wei
Erin M. Conlon
6
3
0
16 Dec 2017
Approximating multivariate posterior distribution functions from Monte
  Carlo samples for sequential Bayesian inference
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
B. Thijssen
L. Wessels
35
8
0
12 Dec 2017
Asymptotic properties and approximation of Bayesian logspline density
  estimators for communication-free parallel computing methods
Asymptotic properties and approximation of Bayesian logspline density estimators for communication-free parallel computing methods
Konstandinos Kotsiopoulos
A. Miroshnikov
Erin M. Conlon
21
0
0
25 Oct 2017
Communication-Free Parallel Supervised Topic Models
Communication-Free Parallel Supervised Topic Models
L. Gao
Ronghuo Zheng
8
0
0
10 Aug 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
29
62
0
02 Aug 2017
Mini-batch Tempered MCMC
Mini-batch Tempered MCMC
Dangna Li
W. Wong
21
5
0
31 Jul 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
27
101
0
16 Jun 2017
Generalized Bouncy Particle Sampler
Generalized Bouncy Particle Sampler
Changye Wu
Christian P. Robert
30
25
0
15 Jun 2017
Average of Recentered Parallel MCMC for Big Data
Average of Recentered Parallel MCMC for Big Data
Changye Wu
Christian P. Robert
11
7
0
15 Jun 2017
Bayesian Bootstraps for Massive Data
Bayesian Bootstraps for Massive Data
Andrés F. Barrientos
Víctor Pena
20
7
0
28 May 2017
Lifelong Generative Modeling
Lifelong Generative Modeling
Jason Ramapuram
Magda Gregorova
Alexandros Kalousis
BDL
CLL
19
119
0
27 May 2017
Parallel Streaming Wasserstein Barycenters
Parallel Streaming Wasserstein Barycenters
Matthew Staib
Sebastian Claici
Justin Solomon
Stefanie Jegelka
11
88
0
21 May 2017
Distributed Bayesian Matrix Factorization with Limited Communication
Distributed Bayesian Matrix Factorization with Limited Communication
Xiangju Qin
P. Blomstedt
Eemeli Leppaaho
P. Parviainen
Samuel Kaski
14
5
0
02 Mar 2017
Asynchronous Stochastic Gradient MCMC with Elastic Coupling
Asynchronous Stochastic Gradient MCMC with Elastic Coupling
Jost Tobias Springenberg
Aaron Klein
Stefan Falkner
Frank Hutter
BDL
21
1
0
02 Dec 2016
Parallel Chromatic MCMC with Spatial Partitioning
Parallel Chromatic MCMC with Spatial Partitioning
Jun Song
David Moore
6
0
0
02 Dec 2016
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Paul Fearnhead
J. Bierkens
M. Pollock
Gareth O. Roberts
25
106
0
23 Nov 2016
Asymptotic properties of parallel Bayesian kernel density estimators
Asymptotic properties of parallel Bayesian kernel density estimators
A. Miroshnikov
Evgeny Savelév
20
1
0
09 Nov 2016
Stochastic Gradient MCMC with Stale Gradients
Stochastic Gradient MCMC with Stale Gradients
Changyou Chen
Nan Ding
Chunyuan Li
Yizhe Zhang
Lawrence Carin
BDL
33
23
0
21 Oct 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
31
18
0
12 Sep 2016
Joining and splitting models with Markov melding
Joining and splitting models with Markov melding
Robert J. B. Goudie
A. Presanis
David J. Lunn
Daniela De Angelis
L. Wernisch
30
29
0
22 Jul 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
Post-Inference Prior Swapping
Post-Inference Prior Swapping
W. Neiswanger
Eric P. Xing
14
1
0
02 Jun 2016
Learning Combinatorial Functions from Pairwise Comparisons
Learning Combinatorial Functions from Pairwise Comparisons
Maria-Florina Balcan
Aaron Smith
Colin White
20
5
0
30 May 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
22
49
0
27 May 2016
Communication-Efficient Distributed Statistical Inference
Communication-Efficient Distributed Statistical Inference
Michael I. Jordan
J. Lee
Yun Yang
14
19
0
25 May 2016
Simple, Scalable and Accurate Posterior Interval Estimation
Simple, Scalable and Accurate Posterior Interval Estimation
Cheng Li
Sanvesh Srivastava
David B. Dunson
10
54
0
13 May 2016
Likelihood Inflating Sampling Algorithm
Likelihood Inflating Sampling Algorithm
R. Entezari
Radu V. Craiu
Jeffrey S. Rosenthal
50
22
0
06 May 2016
Bayesian inference in hierarchical models by combining independent
  posteriors
Bayesian inference in hierarchical models by combining independent posteriors
Ritabrata Dutta
P. Blomstedt
Samuel Kaski
TPM
11
2
0
30 Mar 2016
Adaptive Component-wise Multiple-Try Metropolis Sampling
Adaptive Component-wise Multiple-Try Metropolis Sampling
Jinyoung Yang
Evgeny Levi
Radu V. Craiu
Jeffrey S. Rosenthal
16
7
0
11 Mar 2016
Composing inference algorithms as program transformations
Composing inference algorithms as program transformations
R. Zinkov
Chung-chieh Shan
TPM
14
29
0
06 Mar 2016
Patterns of Scalable Bayesian Inference
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
22
87
0
16 Feb 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
24
70
0
31 Dec 2015
Sequential Markov Chain Monte Carlo for Bayesian Filtering with Massive
  Data
Sequential Markov Chain Monte Carlo for Bayesian Filtering with Massive Data
A. Freitas
Françcois Septier
Lyudmila Mihaylova
8
4
0
08 Dec 2015
Embarrassingly Parallel Sequential Markov-chain Monte Carlo for Large
  Sets of Time Series
Embarrassingly Parallel Sequential Markov-chain Monte Carlo for Large Sets of Time Series
R. Casarin
Radu V. Craiu
Fabrizio Leisen
AI4TS
24
4
0
04 Dec 2015
A Distributed One-Step Estimator
A Distributed One-Step Estimator
Cheng Huang
X. Huo
FedML
16
80
0
04 Nov 2015
Previous
123
Next