Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1311.4780
Cited By
Asymptotically Exact, Embarrassingly Parallel MCMC
19 November 2013
W. Neiswanger
Chong-Jun Wang
Eric P. Xing
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Asymptotically Exact, Embarrassingly Parallel MCMC"
50 / 123 papers shown
Title
Stacking Variational Bayesian Monte Carlo
Francesco Silvestrin
Chengkun Li
Luigi Acerbi
BDL
42
0
0
07 Apr 2025
Capture Global Feature Statistics for One-Shot Federated Learning
Zenghao Guan
Yucan Zhou
Xiaoyan Gu
FedML
63
0
0
10 Mar 2025
Adaptive posterior distributions for uncertainty analysis of covariance matrices in Bayesian inversion problems for multioutput signals
E. Curbelo
Luca Martino
F. Llorente
D. Delgado-Gomez
42
1
0
03 Jan 2025
Data value estimation on private gradients
Zijian Zhou
Xinyi Xu
Daniela Rus
Bryan Kian Hsiang Low
74
0
0
22 Dec 2024
Diffusion Generative Modelling for Divide-and-Conquer MCMC
C. Trojan
Paul Fearnhead
C. Nemeth
DiffM
23
1
0
17 Jun 2024
Embarrassingly Parallel GFlowNets
Tiago da Silva
Luiz Max Carvalho
Amauri Souza
Samuel Kaski
Diego Mesquita
42
1
0
05 Jun 2024
One-Shot Federated Learning with Bayesian Pseudocoresets
Tim d'Hondt
Mykola Pechenizkiy
Robert Peharz
FedML
34
0
0
04 Jun 2024
Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling
Hyungi Lee
G. Nam
Edwin Fong
Juho Lee
BDL
32
5
0
12 Mar 2024
Parallelized Midpoint Randomization for Langevin Monte Carlo
Lu Yu
A. Dalalyan
19
6
0
22 Feb 2024
Distributed Markov Chain Monte Carlo Sampling based on the Alternating Direction Method of Multipliers
Alexandros E. Tzikas
Licio Romao
Mert Pilanci
Alessandro Abate
Mykel J. Kochenderfer
26
0
0
29 Jan 2024
Calibrated One Round Federated Learning with Bayesian Inference in the Predictive Space
Mohsin Hasan
Guojun Zhang
Kaiyang Guo
Xi Chen
Pascal Poupart
FedML
29
9
0
15 Dec 2023
Efficiently analyzing large patient registries with Bayesian joint models for longitudinal and time-to-event data
P. M. Afonso
D. Rizopoulos
A. Palipana
G. C. Zhou
C. Brokamp
R. Szczesniak
E. Andrinopoulou
11
3
0
05 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
33
4
0
21 Apr 2023
Federated Variational Inference Methods for Structured Latent Variable Models
Conor Hassan
Roberto Salomone
Kerrie Mengersen
BDL
FedML
16
4
0
07 Feb 2023
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
13
5
0
06 Oct 2022
SwISS: A Scalable Markov chain Monte Carlo Divide-and-Conquer Strategy
Callum Vyner
Christopher Nemeth
Chris Sherlock
14
26
0
08 Aug 2022
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
22
15
0
01 Aug 2022
Robust One Round Federated Learning with Predictive Space Bayesian Inference
Mohsin Hasan
Zehao Zhang
Kaiyang Guo
Mahdi Karami
Guojun Zhang
Xi Chen
Pascal Poupart
FedML
OOD
17
1
0
20 Jun 2022
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
21
2
0
26 Mar 2022
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
36
11
0
22 Feb 2022
Spatial meshing for general Bayesian multivariate models
M. Peruzzi
David B. Dunson
88
6
0
25 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
27
16
0
09 Dec 2021
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
19
11
0
29 Oct 2021
Divide-and-Conquer Fusion
Ryan S.Y. Chan
M. Pollock
A. M. Johansen
Gareth O. Roberts
19
2
0
14 Oct 2021
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
14
153
0
25 Jul 2021
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs
Vincent Plassier
Maxime Vono
Alain Durmus
Eric Moulines
6
17
0
11 Jun 2021
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning
Maxime Vono
Vincent Plassier
Alain Durmus
Aymeric Dieuleveut
Eric Moulines
FedML
22
35
0
01 Jun 2021
MCMC-driven importance samplers
F. Llorente
E. Curbelo
Luca Martino
Victor Elvira
D. Delgado
27
11
0
06 May 2021
Divide-and-Conquer MCMC for Multivariate Binary Data
Suchit Mehrotra
H. Brantley
P. Onglao
Patricia Bata
R. Romero
Jacob Westman
L. Bangerter
A. Maity
6
2
0
17 Feb 2021
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric P. Xing
Afshin Rostamizadeh
FedML
14
109
0
11 Oct 2020
Parallelizing MCMC Sampling via Space Partitioning
V. Hafych
P. Eller
O. Schulz
Allen Caldwel
26
4
0
07 Aug 2020
A Decentralized Approach to Bayesian Learning
Anjaly Parayil
H. Bai
Jemin George
Prudhvi K. Gurram
14
2
0
14 Jul 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
37
14
0
08 Jun 2020
Informed Proposal Monte Carlo
Sarouyeh Khoshkholgh
A. Zunino
K. Mosegaard
6
14
0
29 May 2020
Non-reversible guided Metropolis kernel
K. Kamatani
Xiaolin Song
6
1
0
12 May 2020
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
16
24
0
23 Apr 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
40
17
0
14 Apr 2020
A High-Performance Implementation of Bayesian Matrix Factorization with Limited Communication
T. Aa
Xiangju Qin
P. Blomstedt
Roel Wuyts
Wilfried Verachtert
Samuel Kaski
11
0
0
06 Apr 2020
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
6
6
0
28 Mar 2020
Parallelising MCMC via Random Forests
Changye Wu
Christian P. Robert
4
5
0
21 Nov 2019
An Algorithm for Distributed Bayesian Inference in Generalized Linear Models
N. Shyamalkumar
Sanvesh Srivastava
10
0
0
18 Nov 2019
Machine Learning Systems for Highly-Distributed and Rapidly-Growing Data
Kevin Hsieh
SyDa
OOD
9
4
0
18 Oct 2019
Distributed Computation for Marginal Likelihood based Model Choice
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
12
5
0
10 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
6
555
0
01 Oct 2019
Mini-batch Metropolis-Hastings MCMC with Reversible SGLD Proposal
Tung-Yu Wu
Y. X. R. Wang
W. Wong
17
10
0
08 Aug 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
Consensus Monte Carlo for Random Subsets using Shared Anchors
Yang Ni
Yuan Ji
P. Müller
14
14
0
28 Jun 2019
Analyzing and Storing Network Intrusion Detection Data using Bayesian Coresets: A Preliminary Study in Offline and Streaming Settings
Fabio Massimo Zennaro
6
6
0
20 Jun 2019
1
2
3
Next