ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.4780
  4. Cited By
Asymptotically Exact, Embarrassingly Parallel MCMC

Asymptotically Exact, Embarrassingly Parallel MCMC

19 November 2013
W. Neiswanger
Chong-Jun Wang
Eric P. Xing
    FedML
ArXivPDFHTML

Papers citing "Asymptotically Exact, Embarrassingly Parallel MCMC"

50 / 123 papers shown
Title
Stacking Variational Bayesian Monte Carlo
Stacking Variational Bayesian Monte Carlo
Francesco Silvestrin
Chengkun Li
Luigi Acerbi
BDL
42
0
0
07 Apr 2025
Capture Global Feature Statistics for One-Shot Federated Learning
Zenghao Guan
Yucan Zhou
Xiaoyan Gu
FedML
63
0
0
10 Mar 2025
Adaptive posterior distributions for uncertainty analysis of covariance matrices in Bayesian inversion problems for multioutput signals
E. Curbelo
Luca Martino
F. Llorente
D. Delgado-Gomez
42
1
0
03 Jan 2025
Data value estimation on private gradients
Data value estimation on private gradients
Zijian Zhou
Xinyi Xu
Daniela Rus
Bryan Kian Hsiang Low
74
0
0
22 Dec 2024
Diffusion Generative Modelling for Divide-and-Conquer MCMC
Diffusion Generative Modelling for Divide-and-Conquer MCMC
C. Trojan
Paul Fearnhead
C. Nemeth
DiffM
23
1
0
17 Jun 2024
Embarrassingly Parallel GFlowNets
Embarrassingly Parallel GFlowNets
Tiago da Silva
Luiz Max Carvalho
Amauri Souza
Samuel Kaski
Diego Mesquita
42
1
0
05 Jun 2024
One-Shot Federated Learning with Bayesian Pseudocoresets
One-Shot Federated Learning with Bayesian Pseudocoresets
Tim d'Hondt
Mykola Pechenizkiy
Robert Peharz
FedML
34
0
0
04 Jun 2024
Enhancing Transfer Learning with Flexible Nonparametric Posterior
  Sampling
Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling
Hyungi Lee
G. Nam
Edwin Fong
Juho Lee
BDL
32
5
0
12 Mar 2024
Parallelized Midpoint Randomization for Langevin Monte Carlo
Parallelized Midpoint Randomization for Langevin Monte Carlo
Lu Yu
A. Dalalyan
19
6
0
22 Feb 2024
Distributed Markov Chain Monte Carlo Sampling based on the Alternating
  Direction Method of Multipliers
Distributed Markov Chain Monte Carlo Sampling based on the Alternating Direction Method of Multipliers
Alexandros E. Tzikas
Licio Romao
Mert Pilanci
Alessandro Abate
Mykel J. Kochenderfer
26
0
0
29 Jan 2024
Calibrated One Round Federated Learning with Bayesian Inference in the
  Predictive Space
Calibrated One Round Federated Learning with Bayesian Inference in the Predictive Space
Mohsin Hasan
Guojun Zhang
Kaiyang Guo
Xi Chen
Pascal Poupart
FedML
29
9
0
15 Dec 2023
Efficiently analyzing large patient registries with Bayesian joint
  models for longitudinal and time-to-event data
Efficiently analyzing large patient registries with Bayesian joint models for longitudinal and time-to-event data
P. M. Afonso
D. Rizopoulos
A. Palipana
G. C. Zhou
C. Brokamp
R. Szczesniak
E. Andrinopoulou
11
3
0
05 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
33
4
0
21 Apr 2023
Federated Variational Inference Methods for Structured Latent Variable
  Models
Federated Variational Inference Methods for Structured Latent Variable Models
Conor Hassan
Roberto Salomone
Kerrie Mengersen
BDL
FedML
16
4
0
07 Feb 2023
Federated Averaging Langevin Dynamics: Toward a unified theory and new
  algorithms
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
Approximate Methods for Bayesian Computation
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
13
5
0
06 Oct 2022
SwISS: A Scalable Markov chain Monte Carlo Divide-and-Conquer Strategy
SwISS: A Scalable Markov chain Monte Carlo Divide-and-Conquer Strategy
Callum Vyner
Christopher Nemeth
Chris Sherlock
14
26
0
08 Aug 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
22
15
0
01 Aug 2022
Robust One Round Federated Learning with Predictive Space Bayesian
  Inference
Robust One Round Federated Learning with Predictive Space Bayesian Inference
Mohsin Hasan
Zehao Zhang
Kaiyang Guo
Mahdi Karami
Guojun Zhang
Xi Chen
Pascal Poupart
FedML
OOD
17
1
0
20 Jun 2022
Distributed data analytics
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
21
2
0
26 Mar 2022
Parallel MCMC Without Embarrassing Failures
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
36
11
0
22 Feb 2022
Spatial meshing for general Bayesian multivariate models
Spatial meshing for general Bayesian multivariate models
M. Peruzzi
David B. Dunson
88
6
0
25 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
27
16
0
09 Dec 2021
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
19
11
0
29 Oct 2021
Divide-and-Conquer Fusion
Divide-and-Conquer Fusion
Ryan S.Y. Chan
M. Pollock
A. M. Johansen
Gareth O. Roberts
19
2
0
14 Oct 2021
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
14
153
0
25 Jul 2021
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm
  via Langevin Monte Carlo within Gibbs
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs
Vincent Plassier
Maxime Vono
Alain Durmus
Eric Moulines
6
17
0
11 Jun 2021
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated
  learning
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning
Maxime Vono
Vincent Plassier
Alain Durmus
Aymeric Dieuleveut
Eric Moulines
FedML
22
35
0
01 Jun 2021
MCMC-driven importance samplers
MCMC-driven importance samplers
F. Llorente
E. Curbelo
Luca Martino
Victor Elvira
D. Delgado
27
11
0
06 May 2021
Divide-and-Conquer MCMC for Multivariate Binary Data
Divide-and-Conquer MCMC for Multivariate Binary Data
Suchit Mehrotra
H. Brantley
P. Onglao
Patricia Bata
R. Romero
Jacob Westman
L. Bangerter
A. Maity
6
2
0
17 Feb 2021
Federated Learning via Posterior Averaging: A New Perspective and
  Practical Algorithms
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric P. Xing
Afshin Rostamizadeh
FedML
14
109
0
11 Oct 2020
Parallelizing MCMC Sampling via Space Partitioning
Parallelizing MCMC Sampling via Space Partitioning
V. Hafych
P. Eller
O. Schulz
Allen Caldwel
26
4
0
07 Aug 2020
A Decentralized Approach to Bayesian Learning
A Decentralized Approach to Bayesian Learning
Anjaly Parayil
H. Bai
Jemin George
Prudhvi K. Gurram
14
2
0
14 Jul 2020
A Survey of Bayesian Statistical Approaches for Big Data
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
37
14
0
08 Jun 2020
Informed Proposal Monte Carlo
Informed Proposal Monte Carlo
Sarouyeh Khoshkholgh
A. Zunino
K. Mosegaard
6
14
0
29 May 2020
Non-reversible guided Metropolis kernel
Non-reversible guided Metropolis kernel
K. Kamatani
Xiaolin Song
6
1
0
12 May 2020
Federated Stochastic Gradient Langevin Dynamics
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
16
24
0
23 Apr 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
40
17
0
14 Apr 2020
A High-Performance Implementation of Bayesian Matrix Factorization with
  Limited Communication
A High-Performance Implementation of Bayesian Matrix Factorization with Limited Communication
T. Aa
Xiangju Qin
P. Blomstedt
Roel Wuyts
Wilfried Verachtert
Samuel Kaski
11
0
0
06 Apr 2020
Variational Inference with Vine Copulas: An efficient Approach for
  Bayesian Computer Model Calibration
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
6
6
0
28 Mar 2020
Parallelising MCMC via Random Forests
Parallelising MCMC via Random Forests
Changye Wu
Christian P. Robert
4
5
0
21 Nov 2019
An Algorithm for Distributed Bayesian Inference in Generalized Linear
  Models
An Algorithm for Distributed Bayesian Inference in Generalized Linear Models
N. Shyamalkumar
Sanvesh Srivastava
10
0
0
18 Nov 2019
Machine Learning Systems for Highly-Distributed and Rapidly-Growing Data
Machine Learning Systems for Highly-Distributed and Rapidly-Growing Data
Kevin Hsieh
SyDa
OOD
9
4
0
18 Oct 2019
Distributed Computation for Marginal Likelihood based Model Choice
Distributed Computation for Marginal Likelihood based Model Choice
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
12
5
0
10 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
6
555
0
01 Oct 2019
Mini-batch Metropolis-Hastings MCMC with Reversible SGLD Proposal
Mini-batch Metropolis-Hastings MCMC with Reversible SGLD Proposal
Tung-Yu Wu
Y. X. R. Wang
W. Wong
17
10
0
08 Aug 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
Consensus Monte Carlo for Random Subsets using Shared Anchors
Consensus Monte Carlo for Random Subsets using Shared Anchors
Yang Ni
Yuan Ji
P. Müller
14
14
0
28 Jun 2019
Analyzing and Storing Network Intrusion Detection Data using Bayesian
  Coresets: A Preliminary Study in Offline and Streaming Settings
Analyzing and Storing Network Intrusion Detection Data using Bayesian Coresets: A Preliminary Study in Offline and Streaming Settings
Fabio Massimo Zennaro
6
6
0
20 Jun 2019
123
Next