Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1311.0851
Cited By
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
4 November 2013
D. Donoho
M. Gavish
Iain M. Johnstone
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model"
50 / 88 papers shown
Title
Statistical Limits in Random Tensors with Multiple Correlated Spikes
Yang Qi
Alexis Decurninge
54
0
0
05 Mar 2025
A Pluggable Common Sense-Enhanced Framework for Knowledge Graph Completion
Guanglin Niu
Bo Li
Siling Feng
38
0
0
06 Oct 2024
On the universality of neural encodings in CNNs
Florentin Guth
Brice Ménard
SSL
58
5
0
28 Sep 2024
Optimal Estimation of Structured Covariance Operators
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
43
3
0
04 Aug 2024
A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set
Man-Chung Yue
Yves Rychener
Daniel Kuhn
Viet Anh Nguyen
39
1
0
30 May 2024
Model Editing as a Robust and Denoised variant of DPO: A Case Study on Toxicity
Rheeya Uppaal
Apratim De
Yiting He
Yiquao Zhong
Junjie Hu
46
9
0
22 May 2024
Spectral Properties of Elementwise-Transformed Spiked Matrices
Michael J. Feldman
83
3
0
03 Nov 2023
Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective
Davide Ghio
Yatin Dandi
Florent Krzakala
Lenka Zdeborová
DiffM
30
26
0
27 Aug 2023
Multifidelity Covariance Estimation via Regression on the Manifold of Symmetric Positive Definite Matrices
A. Maurais
Terrence Alsup
Benjamin Peherstorfer
Youssef Marzouk
38
3
0
23 Jul 2023
Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
Runshi Tang
M. Yuan
Anru R. Zhang
47
3
0
02 Jul 2023
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
29
2
0
23 Jun 2023
Uniform error bound for PCA matrix denoising
Xin T. Tong
Wanjie Wang
Yuguan Wang
22
2
0
22 Jun 2023
Analysis and Approximate Inference of Large Random Kronecker Graphs
Zhenyu Liao
Yuanqian Xia
Chengmei Niu
Yong Xiao
71
0
0
14 Jun 2023
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
39
10
0
29 May 2023
On the Noise Sensitivity of the Randomized SVD
Elad Romanov
34
0
0
27 May 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
45
4
0
10 Mar 2023
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
A. Maurais
Terrence Alsup
Benjamin Peherstorfer
Youssef Marzouk
28
7
0
31 Jan 2023
A CLT for the LSS of large dimensional sample covariance matrices with diverging spikes
Zhijun Liu
Jiang Hu
Z. Bai
Haiyan Song
19
6
0
12 Dec 2022
Correlation matrix of equi-correlated normal population: fluctuation of the largest eigenvalue, scaling of the bulk eigenvalues, and stock market
Y. Akama
32
3
0
11 Dec 2022
Pitfalls of Climate Network Construction: A Statistical Perspective
Moritz Haas
B. Goswami
U. V. Luxburg
21
4
0
05 Nov 2022
Projection inference for high-dimensional covariance matrices with structured shrinkage targets
Fabian Mies
A. Steland
32
2
0
04 Nov 2022
Matrix Denoising with Partial Noise Statistics: Optimal Singular Value Shrinkage of Spiked F-Matrices
M. Gavish
W. Leeb
Elad Romanov
18
6
0
02 Nov 2022
Fast Principal Component Analysis for Cryo-EM Images
Nicholas F. Marshall
Oscar Mickelin
Yunpeng Shi
A. Singer
24
3
0
31 Oct 2022
Disordered Systems Insights on Computational Hardness
D. Gamarnik
Cristopher Moore
Lenka Zdeborová
AI4CE
38
33
0
15 Oct 2022
Optimal Eigenvalue Shrinkage in the Semicircle Limit
D. Donoho
M. J. Feldman
30
5
0
10 Oct 2022
Large covariance matrix estimation via penalized log-det heuristics
E. Bernardi
M. Farné
28
0
0
11 Sep 2022
Low-rank Matrix Estimation with Inhomogeneous Noise
A. Guionnet
Justin Ko
Florent Krzakala
Lenka Zdeborová
18
16
0
11 Aug 2022
A CLT for the LSS of large dimensional sample covariance matrices with unbounded dispersions
Zhijun Liu
Jiang Hu
Z. Bai
Haiyan Song
19
2
0
15 May 2022
Sparsification and Filtering for Spatial-temporal GNN in Multivariate Time-series
Yuanrong Wang
T. Aste
AI4TS
31
10
0
08 Mar 2022
An Improvement on the Hotelling
T
2
T^2
T
2
Test Using the Ledoit-Wolf Nonlinear Shrinkage Estimator
Benjamin D. Robinson
Robert Malinas
Van Latimer
Beth Bjorkman Morrison
Alfred Hero
82
0
0
25 Feb 2022
Long Random Matrices and Tensor Unfolding
Gerard Ben Arous
Daniel Zhengyu Huang
Jiaoyang Huang
41
18
0
19 Oct 2021
James-Stein estimation of the first principal component
Alexander D. Shkolnik
22
9
0
05 Sep 2021
Inference for Heteroskedastic PCA with Missing Data
Yuling Yan
Yuxin Chen
Jianqing Fan
43
16
0
26 Jul 2021
Shrinkage Estimation of Functions of Large Noisy Symmetric Matrices
Panagiotis Lolas
Lexing Ying
39
1
0
09 Jun 2021
Spiked Singular Values and Vectors under Extreme Aspect Ratios
M. Feldman
15
9
0
30 Apr 2021
Measuring dependence between random vectors via optimal transport
Gilles Mordant
Johan Segers
OT
14
24
0
28 Apr 2021
High-Dimensional Covariance Shrinkage for Signal Detection
Benjamin D. Robinson
Robert Malinas
Alfred Hero
18
1
0
22 Mar 2021
Concentration of Non-Isotropic Random Tensors with Applications to Learning and Empirical Risk Minimization
Mathieu Even
Laurent Massoulié
24
14
0
04 Feb 2021
Power Iteration for Tensor PCA
Jiaoyang Huang
Daniel Zhengyu Huang
Qing Yang
Guang Cheng
35
18
0
26 Dec 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
35
61
0
21 Oct 2020
Detecting approximate replicate components of a high-dimensional random vector with latent structure
Xin Bing
F. Bunea
M. Wegkamp
35
4
0
05 Oct 2020
Shrinkage Estimation of the Frechet Mean in Lie groups
Chun-Hao Yang
B. Vemuri
6
3
0
28 Sep 2020
Statistical inference for principal components of spiked covariance matrices
Z. Bao
Xiucai Ding
Jingming Wang
Ke Wang
23
50
0
27 Aug 2020
Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning
Lin Liu
Rajarshi Mukherjee
J. M. Robins
CML
38
16
0
07 Aug 2020
Covariance estimation with nonnegative partial correlations
Jake A. Soloff
Adityanand Guntuboyina
Michael I. Jordan
23
10
0
30 Jul 2020
An Empirical Bayes Approach to Shrinkage Estimation on the Manifold of Symmetric Positive-Definite Matrices
Chun-Hao Yang
Hani Doss
B. Vemuri
18
4
0
04 Jul 2020
High-Dimensional Quadratic Discriminant Analysis under Spiked Covariance Model
Houssem Sifaou
A. Kammoun
Mohamed-Slim Alouini
11
8
0
25 Jun 2020
Optimal singular value shrinkage for operator norm loss
W. Leeb
19
11
0
24 May 2020
Non-Sparse PCA in High Dimensions via Cone Projected Power Iteration
Yufei Yi
Matey Neykov
14
2
0
15 May 2020
How to reduce dimension with PCA and random projections?
Fan Yang
Sifan Liu
Yan Sun
David P. Woodruff
31
28
0
01 May 2020
1
2
Next