Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1311.0851
Cited By
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
4 November 2013
D. Donoho
M. Gavish
Iain M. Johnstone
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model"
38 / 88 papers shown
Title
Regularization in High-Dimensional Regression and Classification via Random Matrix Theory
Panagiotis Lolas
43
13
0
30 Mar 2020
Geodesically parameterized covariance estimation
A. Musolas
S.T. Smith
Youssef Marzouk
20
4
0
06 Jan 2020
A note on identifiability conditions in confirmatory factor analysis
W. Leeb
CML
9
4
0
05 Dec 2019
Matrix Means and a Novel High-Dimensional Shrinkage Phenomenon
A. Lodhia
Keith D. Levin
Elizaveta Levina
26
3
0
16 Oct 2019
Asymptotics of empirical eigenvalues for large separable covariance matrices
Tiebin Mi
Robert C. Qiu
34
0
0
10 Oct 2019
Spiked separable covariance matrices and principal components
Xiucai Ding
Fan Yang
25
56
0
29 May 2019
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
31
7
0
26 Apr 2019
Optimal Recovery of Precision Matrix for Mahalanobis Distance from High Dimensional Noisy Observations in Manifold Learning
M. Gavish
Ronen Talmon
P. Su
Hau‐Tieng Wu
30
8
0
19 Apr 2019
Deep CNNs Meet Global Covariance Pooling: Better Representation and Generalization
Qilong Wang
Jiangtao Xie
W. Zuo
Lei Zhang
P. Li
25
99
0
15 Apr 2019
Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification
L. Duan
30
9
0
21 Mar 2019
Matrix denoising for weighted loss functions and heterogeneous signals
W. Leeb
32
25
0
25 Feb 2019
Statistical inference with F-statistics when fitting simple models to high-dimensional data
Hannes Leeb
Lukas Steinberger
17
1
0
12 Feb 2019
Robust Streaming PCA
D. Bienstock
Minchan Jeong
Apurv Shukla
Se-Young Yun
20
3
0
08 Feb 2019
Steerable
e
e
e
PCA: Rotationally Invariant Exponential Family PCA
Zhizhen Zhao
Lydia T. Liu
A. Singer
17
3
0
20 Dec 2018
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
30
25
0
06 Nov 2018
RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation under Latent Confounding
Rajen Dinesh Shah
Benjamin Frot
Gian-Andrea Thanei
N. Meinshausen
19
6
0
02 Nov 2018
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
David Hong
Fan Yang
Jeffrey A. Fessler
Laura Balzano
21
25
0
30 Oct 2018
Heteroskedastic PCA: Algorithm, Optimality, and Applications
Anru R. Zhang
T. Tony Cai
Yihong Wu
32
70
0
19 Oct 2018
Optimal Covariance Estimation for Condition Number Loss in the Spiked Model
D. Donoho
Behrooz Ghorbani
111
7
0
17 Oct 2018
Adapting to Unknown Noise Distribution in Matrix Denoising
Andrea Montanari
Feng Ruan
Jun Yan
31
13
0
06 Oct 2018
Harmonic Alignment
Jay S. Stanley
Scott A. Gigante
Guy Wolf
Smita Krishnaswamy
DiffM
32
16
0
30 Sep 2018
Robust high dimensional factor models with applications to statistical machine learning
Jianqing Fan
Kaizheng Wang
Yiqiao Zhong
Ziwei Zhu
34
54
0
12 Aug 2018
Estimating Learnability in the Sublinear Data Regime
Weihao Kong
Gregory Valiant
45
29
0
04 May 2018
Graph-based regularization for regression problems with alignment and highly-correlated designs
Yuan Li
Benjamin Mark
Garvesh Raskutti
Rebecca Willett
Hyebin Song
David Neiman
14
23
0
20 Mar 2018
Multidimensional Scaling of Noisy High Dimensional Data
Erez Peterfreund
M. Gavish
19
21
0
30 Jan 2018
The Dispersion Bias
L. Goldberg
A. Papanicolaou
Alexander D. Shkolnik
34
15
0
15 Nov 2017
Tail sums of Wishart and GUE eigenvalues beyond the bulk edge
Iain M. Johnstone
22
1
0
21 Apr 2017
Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals
A. Beskos
Ajay Jasra
K. Law
Youssef Marzouk
Yan Zhou
20
40
0
15 Mar 2017
Think globally, fit locally under the Manifold Setup: Asymptotic Analysis of Locally Linear Embedding
Hau‐Tieng Wu
Nan Wu
8
40
0
12 Mar 2017
PCA from noisy, linearly reduced data: the diagonal case
Edgar Dobriban
W. Leeb
A. Singer
26
5
0
30 Nov 2016
Graph-Guided Banding of the Covariance Matrix
Jacob Bien
19
6
0
01 Jun 2016
Denoising and Covariance Estimation of Single Particle Cryo-EM Images
T. Bhamre
Teng Zhang
A. Singer
21
64
0
22 Feb 2016
Latent common manifold learning with alternating diffusion: analysis and applications
Ronen Talmon
Hau‐Tieng Wu
MedIm
27
44
0
30 Jan 2016
Spectrum Estimation from Samples
Weihao Kong
Gregory Valiant
18
72
0
30 Jan 2016
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Murat A. Erdogdu
29
13
0
28 Nov 2015
Towards Effective Codebookless Model for Image Classification
Qilong Wang
P. Li
Lei Zhang
W. Zuo
16
31
0
09 Jul 2015
Fast Steerable Principal Component Analysis
Zhizhen Zhao
Y. Shkolnisky
A. Singer
29
70
0
02 Dec 2014
Optimal Shrinkage of Singular Values
M. Gavish
D. Donoho
47
181
0
29 May 2014
Previous
1
2