Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1310.0425
Cited By
Testing the Manifold Hypothesis
1 October 2013
Charles Fefferman
S. Mitter
Hariharan Narayanan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Testing the Manifold Hypothesis"
23 / 23 papers shown
Title
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
Michal Balcerak
Tamaz Amiranashvili
Suprosanna Shit
Antonio Terpin
Lea Bogensperger
Sebastian Kaltenbach
Petros Koumoutsakos
Bjoern Menze
DiffM
112
3
0
14 Apr 2025
Token embeddings violate the manifold hypothesis
Michael Robinson
Sourya Dey
Tony Chiang
96
2
0
01 Apr 2025
Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
Edwin Tay
Nazli Tümer
Amir A. Zadpoor
MedIm
215
0
0
27 Mar 2025
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
86
5
0
14 Mar 2025
Variational autoencoders with latent high-dimensional steady geometric flows for dynamics
Andrew Gracyk
DRL
126
1
0
03 Jan 2025
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Ya-Wei Eileen Lin
Ronald R. Coifman
Zhengchao Wan
Ronen Talmon
166
3
0
28 Oct 2024
Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Xingzhi Sun
Danqi Liao
Kincaid MacDonald
Yanlei Zhang
Chen Liu
Guillaume Huguet
Guy Wolf
Ian M. Adelstein
Tim G. J. Rudner
Smita Krishnaswamy
80
6
0
16 Oct 2024
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Enrico Ventura
Beatrice Achilli
Gianluigi Silvestri
Carlo Lucibello
L. Ambrogioni
DiffM
76
8
0
08 Oct 2024
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
Willem Diepeveen
Georgios Batzolis
Zakhar Shumaylov
Carola-Bibiane Schönlieb
DiffM
88
3
0
02 Oct 2024
Relative Representations: Topological and Geometric Perspectives
Alejandro García-Castellanos
Giovanni Luca Marchetti
Danica Kragic
Martina Scolamiero
81
1
0
17 Sep 2024
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Melanie F. Pradier
Javier González
CML
54
0
0
09 Sep 2024
Manifold learning in Wasserstein space
Keaton Hamm
Caroline Moosmüller
Bernhard Schmitzer
Matthew Thorpe
77
5
0
14 Nov 2023
Application-driven Validation of Posteriors in Inverse Problems
T. Adler
Jan-Hinrich Nolke
Annika Reinke
M. Tizabi
Sebastian Gruber
...
Lynton Ardizzone
Paul F. Jaeger
Florian Buettner
Ullrich Kothe
Lena Maier-Hein
MedIm
66
1
0
18 Sep 2023
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
64
2
0
02 Feb 2022
Mode and Ridge Estimation in Euclidean and Directional Product Spaces: A Mean Shift Approach
Yikun Zhang
Yen-Chi Chen
115
1
0
16 Oct 2021
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
58
43
0
18 Jun 2020
Nonparametric ridge estimation
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
119
120
0
20 Dec 2012
Learning Manifolds with K-Means and K-Flats
Guillermo D. Cañas
T. Poggio
Lorenzo Rosasco
106
49
0
05 Sep 2012
Manifold estimation and singular deconvolution under Hausdorff loss
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
UQCV
65
101
0
21 Sep 2011
Robust recovery of multiple subspaces by geometric l_p minimization
Gilad Lerman
Teng Zhang
90
86
0
19 Apr 2011
Minimax Manifold Estimation
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
84
128
0
04 Jul 2010
Probabilistic Recovery of Multiple Subspaces in Point Clouds by Geometric lp Minimization
Gilad Lerman
Teng Zhang
95
22
0
09 Feb 2010
K-Dimensional Coding Schemes in Hilbert Spaces
Augusto Maurer
96
108
0
03 Feb 2010
1