ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6865
  4. Cited By
Modeling Documents with Deep Boltzmann Machines

Modeling Documents with Deep Boltzmann Machines

26 September 2013
Nitish Srivastava
Ruslan Salakhutdinov
Geoffrey E. Hinton
    BDL
ArXivPDFHTML

Papers citing "Modeling Documents with Deep Boltzmann Machines"

10 / 10 papers shown
Title
MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model
MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model
Md Abrar Jahin
Asef Shahriar
Md Al Amin
AI4TS
28
4
0
24 May 2024
Restricted Boltzmann Machine and Deep Belief Network: Tutorial and
  Survey
Restricted Boltzmann Machine and Deep Belief Network: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
BDL
AI4CE
11
8
0
26 Jul 2021
A Discrete Variational Recurrent Topic Model without the
  Reparametrization Trick
A Discrete Variational Recurrent Topic Model without the Reparametrization Trick
Mehdi Rezaee
Francis Ferraro
BDL
DRL
17
27
0
22 Oct 2020
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Hao Zhang
Bo Chen
Yulai Cong
D. Guo
Hongwei Liu
Mingyuan Zhou
BDL
16
27
0
15 Jun 2020
Multi-local Collaborative AutoEncoder
Multi-local Collaborative AutoEncoder
Jielei Chu
Hongjun Wang
Jing Liu
Zhiguo Gong
Tianrui Li
BDL
13
9
0
12 Jun 2019
Modeling Activity Tracker Data Using Deep Boltzmann Machines
Modeling Activity Tracker Data Using Deep Boltzmann Machines
M. Treppner
S. Lenz
Harald Binder
D. Zöller
13
1
0
28 Feb 2018
Regularization for Unsupervised Deep Neural Nets
Regularization for Unsupervised Deep Neural Nets
Baiyang Wang
Diego Klabjan
BDL
15
25
0
15 Aug 2016
Learning from LDA using Deep Neural Networks
Learning from LDA using Deep Neural Networks
Dongxu Zhang
Tianyi Luo
Dong Wang
Rong Liu
BDL
16
23
0
05 Aug 2015
Improved Semantic Representations From Tree-Structured Long Short-Term
  Memory Networks
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
Kai Sheng Tai
R. Socher
Christopher D. Manning
AIMat
24
3,111
0
28 Feb 2015
Priors for Random Count Matrices Derived from a Family of Negative
  Binomial Processes
Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes
Mingyuan Zhou
Oscar Hernan Madrid Padilla
James G. Scott
53
29
0
12 Apr 2014
1