ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1305.6663
  4. Cited By
Generalized Denoising Auto-Encoders as Generative Models
v1v2v3v4 (latest)

Generalized Denoising Auto-Encoders as Generative Models

29 May 2013
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
ArXiv (abs)PDFHTML

Papers citing "Generalized Denoising Auto-Encoders as Generative Models"

50 / 228 papers shown
Title
Reconstruction of Hidden Representation for Robust Feature Extraction
Reconstruction of Hidden Representation for Robust Feature Extraction
Zeng Yu
Tianrui Li
Ning Yu
Yi Pan
Hongmei Chen
Bing-Quan Liu
47
27
0
08 Oct 2017
AutoEncoder by Forest
AutoEncoder by Forest
Ji Feng
Zhi Zhou
AI4CE
67
63
0
26 Sep 2017
Detection of Anomalies in Large Scale Accounting Data using Deep
  Autoencoder Networks
Detection of Anomalies in Large Scale Accounting Data using Deep Autoencoder Networks
Marco Schreyer
Timur Sattarov
Damian Borth
Andreas Dengel
Bernd Reimer
74
106
0
15 Sep 2017
Denoising Autoencoders for Overgeneralization in Neural Networks
Denoising Autoencoders for Overgeneralization in Neural Networks
G. Spigler
UQCVAI4CE
61
27
0
14 Sep 2017
Differentially Private Mixture of Generative Neural Networks
Differentially Private Mixture of Generative Neural Networks
G. Ács
Luca Melis
C. Castelluccia
Emiliano De Cristofaro
SyDa
85
122
0
13 Sep 2017
Improved ArtGAN for Conditional Synthesis of Natural Image and Artwork
Improved ArtGAN for Conditional Synthesis of Natural Image and Artwork
W. Tan
Chee Seng Chan
H. Aguirre
Kiyoshi Tanaka
GAN
21
2
0
31 Aug 2017
On denoising autoencoders trained to minimise binary cross-entropy
On denoising autoencoders trained to minimise binary cross-entropy
Antonia Creswell
Kai Arulkumaran
Anil A. Bharath
61
72
0
28 Aug 2017
A New Learning Paradigm for Random Vector Functional-Link Network: RVFL+
A New Learning Paradigm for Random Vector Functional-Link Network: RVFL+
Pengbo Zhang
Zhi-Xin Yang
52
93
0
28 Aug 2017
Generating Visual Representations for Zero-Shot Classification
Generating Visual Representations for Zero-Shot Classification
Max Bucher
Stéphane Herbin
F. Jurie
VLM
104
152
0
23 Aug 2017
Restricted Boltzmann machine to determine the input weights for extreme
  learning machines
Restricted Boltzmann machine to determine the input weights for extreme learning machines
André G. C. Pacheco
R. Krohling
Carlos A. S. da Silva
26
37
0
17 Aug 2017
GANs for Biological Image Synthesis
GANs for Biological Image Synthesis
A. Osokin
A. Chessel
R. Carazo-Salas
F. Vaggi
GAN
66
105
0
15 Aug 2017
Collaborative Filtering using Denoising Auto-Encoders for Market Basket
  Data
Collaborative Filtering using Denoising Auto-Encoders for Market Basket Data
Andres G. Abad
Luis I. Reyes Castro
33
2
0
14 Aug 2017
Sparse Coding and Autoencoders
Sparse Coding and Autoencoders
Akshay Rangamani
Anirbit Mukherjee
A. Basu
T. Ganapathi
Ashish Arora
S. Chin
T. Tran
112
20
0
12 Aug 2017
Variational Generative Stochastic Networks with Collaborative Shaping
Variational Generative Stochastic Networks with Collaborative Shaping
Philip Bachman
Doina Precup
BDLGAN
78
13
0
02 Aug 2017
Learning Representations and Generative Models for 3D Point Clouds
Learning Representations and Generative Models for 3D Point Clouds
Panos Achlioptas
Olga Diamanti
Ioannis Mitliagkas
Leonidas Guibas
3DV3DPC
84
88
0
08 Jul 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
109
447
0
07 Jun 2017
Generative Models of Visually Grounded Imagination
Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam
Ian S. Fischer
Jonathan Huang
Kevin Patrick Murphy
103
139
0
30 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
260
210
0
25 May 2017
LOGAN: Membership Inference Attacks Against Generative Models
LOGAN: Membership Inference Attacks Against Generative Models
Jamie Hayes
Luca Melis
G. Danezis
Emiliano De Cristofaro
111
104
0
22 May 2017
MIDA: Multiple Imputation using Denoising Autoencoders
MIDA: Multiple Imputation using Denoising Autoencoders
Lovedeep Gondara
Ke Wang
AI4CE
131
85
0
08 May 2017
Learning Human Motion Models for Long-term Predictions
Learning Human Motion Models for Long-term Predictions
Partha Ghosh
Mingli Song
Emre Aksan
Otmar Hilliges
3DH
69
240
0
10 Apr 2017
Deep generative-contrastive networks for facial expression recognition
Deep generative-contrastive networks for facial expression recognition
Youngsung Kim
ByungIn Yoo
Youngjun Kwak
Changkyu Choi
Junmo Kim
CVBM
72
89
0
21 Mar 2017
Learning Robust Visual-Semantic Embeddings
Learning Robust Visual-Semantic Embeddings
Yao-Hung Hubert Tsai
Liang-Kang Huang
Ruslan Salakhutdinov
SSLAI4TS
78
166
0
17 Mar 2017
Denoising Adversarial Autoencoders
Denoising Adversarial Autoencoders
Antonia Creswell
Anil Anthony Bharath
DiffM
97
131
0
03 Mar 2017
DeepFace: Face Generation using Deep Learning
DeepFace: Face Generation using Deep Learning
Hardie Cate
Fahim Dalvi
Zeshan Hussain
CVBMVLM
30
7
0
07 Jan 2017
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Chongxuan Li
Jun Zhu
Bo Zhang
AI4CE
94
42
0
22 Nov 2016
Optimal Binary Autoencoding with Pairwise Correlations
Optimal Binary Autoencoding with Pairwise Correlations
Akshay Balsubramani
SSL
52
1
0
07 Nov 2016
Multi-view Generative Adversarial Networks
Multi-view Generative Adversarial Networks
Mickaël Chen
Ludovic Denoyer
GAN
68
30
0
07 Nov 2016
Improving Sampling from Generative Autoencoders with Markov Chains
Improving Sampling from Generative Autoencoders with Markov Chains
Antonia Creswell
Kai Arulkumaran
Anil Anthony Bharath
BDLSyDaGAN
90
10
0
28 Oct 2016
Representation Learning with Deconvolution for Multivariate Time Series
  Classification and Visualization
Representation Learning with Deconvolution for Multivariate Time Series Classification and Visualization
Zhiguang Wang
Wei Song
Lu Liu
Fan Zhang
Junxiao Xue
Yangdong Ye
Ming Fan
Mingliang Xu
AI4TSFAtt
86
23
0
24 Oct 2016
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Lantao Yu
Weinan Zhang
Jun Wang
Yong Yu
GAN
78
2,412
0
18 Sep 2016
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Hao Wang
Dit-Yan Yeung
BDL
74
225
0
24 Aug 2016
Deep Reconstruction-Classification Networks for Unsupervised Domain
  Adaptation
Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation
Muhammad Ghifary
W. Kleijn
Mengjie Zhang
David Balduzzi
Wen Li
94
868
0
12 Jul 2016
Tutorial on Variational Autoencoders
Tutorial on Variational Autoencoders
Carl Doersch
BDLDRL
103
1,755
0
19 Jun 2016
DeepFood: Deep Learning-Based Food Image Recognition for Computer-Aided
  Dietary Assessment
DeepFood: Deep Learning-Based Food Image Recognition for Computer-Aided Dietary Assessment
Chang Liu
Yu Cao
Yan Luo
Guanling Chen
V. Vokkarane
Yunsheng Ma
54
253
0
17 Jun 2016
Digits that are not: Generating new types through deep neural nets
Digits that are not: Generating new types through deep neural nets
A. Kazakçi
Balázs Kégl
DiffM
46
10
0
14 Jun 2016
Transport Analysis of Infinitely Deep Neural Network
Transport Analysis of Infinitely Deep Neural Network
Sho Sonoda
Noboru Murata
34
4
0
10 May 2016
A Survey on Bayesian Deep Learning
A Survey on Bayesian Deep Learning
Hao Wang
Dit-Yan Yeung
BDL
113
49
0
06 Apr 2016
Variational methods for Conditional Multimodal Deep Learning
Variational methods for Conditional Multimodal Deep Learning
Gaurav Pandey
Ambedkar Dukkipati
GANDRLCVBM
80
15
0
06 Mar 2016
Learning to Generate with Memory
Learning to Generate with Memory
Chongxuan Li
Jun Zhu
Bo Zhang
BDL
123
42
0
24 Feb 2016
Deep Learning over Multi-field Categorical Data: A Case Study on User
  Response Prediction
Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction
Weinan Zhang
Tianming Du
Jun Wang
AI4CE
105
494
0
11 Jan 2016
Cascading Denoising Auto-Encoder as a Deep Directed Generative Model
Dong-Hyun Lee
DiffM
16
2
0
23 Nov 2015
Deconstructing the Ladder Network Architecture
Deconstructing the Ladder Network Architecture
Mohammad Pezeshki
Linxi Fan
Philemon Brakel
Aaron Courville
Yoshua Bengio
91
98
0
19 Nov 2015
Binding via Reconstruction Clustering
Binding via Reconstruction Clustering
Klaus Greff
R. Srivastava
Jürgen Schmidhuber
OCL
98
40
0
19 Nov 2015
Denoising Criterion for Variational Auto-Encoding Framework
Denoising Criterion for Variational Auto-Encoding Framework
Daniel Jiwoong Im
Sungjin Ahn
Roland Memisevic
Yoshua Bengio
103
196
0
19 Nov 2015
Why are deep nets reversible: A simple theory, with implications for
  training
Why are deep nets reversible: A simple theory, with implications for training
Sanjeev Arora
Yingyu Liang
Tengyu Ma
96
54
0
18 Nov 2015
Predicting distributions with Linearizing Belief Networks
Predicting distributions with Linearizing Belief Networks
Yann N. Dauphin
David Grangier
67
18
0
17 Nov 2015
Adopting Robustness and Optimality in Fitting and Learning
Adopting Robustness and Optimality in Fitting and Learning
Zhiguang Wang
Tim Oates
J. Lo
36
2
0
13 Oct 2015
Generative Adversarial Networks in Estimation of Distribution Algorithms
  for Combinatorial Optimization
Generative Adversarial Networks in Estimation of Distribution Algorithms for Combinatorial Optimization
Malte Probst
GAN
27
7
0
30 Sep 2015
Learning Contextual Dependencies with Convolutional Hierarchical
  Recurrent Neural Networks
Learning Contextual Dependencies with Convolutional Hierarchical Recurrent Neural Networks
Zhen Zuo
Bing Shuai
G. Wang
Xiao Liu
Xingxing Wang
Bernie Wang
66
94
0
13 Sep 2015
Previous
12345
Next