ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.7161
  4. Cited By
A significance test for the lasso

A significance test for the lasso

30 January 2013
R. Lockhart
Jonathan E. Taylor
R. Tibshirani
Robert Tibshirani
ArXivPDFHTML

Papers citing "A significance test for the lasso"

35 / 35 papers shown
Title
Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Stefan Rass
Martin Dallinger
49
0
0
24 Mar 2025
Quantum Algorithms for the Pathwise Lasso
Quantum Algorithms for the Pathwise Lasso
J. F. Doriguello
Debbie Lim
Chi Seng Pun
P. Rebentrost
Tushar Vaidya
37
1
0
21 Dec 2023
Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear Models
Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear Models
Xiaorui Zhu
Yi Qin
Peng Wang
13
0
0
14 Jul 2023
Simple and Scalable Algorithms for Cluster-Aware Precision Medicine
Simple and Scalable Algorithms for Cluster-Aware Precision Medicine
Amanda M. Buch
C. Liston
L. Grosenick
18
0
0
29 Nov 2022
Mapping the landscape of histomorphological cancer phenotypes using
  self-supervised learning on unlabeled, unannotated pathology slides
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unlabeled, unannotated pathology slides
A. Quiros
N. Coudray
A. Yeaton
Xinyu Yang
Bojing Liu
...
H. Pass
A. Moreira
J. L. Quesne
A. Tsirigos
Ke-Fei Yuan
SSL
13
5
0
04 May 2022
More Powerful Conditional Selective Inference for Generalized Lasso by
  Parametric Programming
More Powerful Conditional Selective Inference for Generalized Lasso by Parametric Programming
Vo Nguyen Le Duy
Ichiro Takeuchi
23
33
0
11 May 2021
Conditional Selective Inference for Robust Regression and Outlier
  Detection using Piecewise-Linear Homotopy Continuation
Conditional Selective Inference for Robust Regression and Outlier Detection using Piecewise-Linear Homotopy Continuation
Toshiaki Tsukurimichi
Yu Inatsu
Vo Nguyen Le Duy
Ichiro Takeuchi
34
22
0
22 Apr 2021
Lasso Inference for High-Dimensional Time Series
Lasso Inference for High-Dimensional Time Series
R. Adámek
Stephan Smeekes
Ines Wilms
AI4TS
26
33
0
21 Jul 2020
Assumption-lean inference for generalised linear model parameters
Assumption-lean inference for generalised linear model parameters
S. Vansteelandt
O. Dukes
CML
19
49
0
15 Jun 2020
Statistical significance in high-dimensional linear mixed models
Statistical significance in high-dimensional linear mixed models
Lina Lin
Mathias Drton
Ali Shojaie
26
5
0
16 Dec 2019
Finite sample improvement of Akaike's Information Criterion
Finite sample improvement of Akaike's Information Criterion
Adrien Saumard
F. Navarro
6
3
0
06 Mar 2018
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Qifan Song
F. Liang
16
76
0
24 Dec 2017
Network classification with applications to brain connectomics
Network classification with applications to brain connectomics
Jesús D Arroyo Relión
Daniel A Kessler
Elizaveta Levina
S. Taylor
16
74
0
27 Jan 2017
Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned
  by SURE?
Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE?
R. Tibshirani
Saharon Rosset
11
20
0
30 Dec 2016
Marginal false discovery rates for penalized regression models
Marginal false discovery rates for penalized regression models
P. Breheny
20
28
0
19 Jul 2016
Online Rules for Control of False Discovery Rate and False Discovery
  Exceedance
Online Rules for Control of False Discovery Rate and False Discovery Exceedance
Adel Javanmard
Andrea Montanari
14
105
0
29 Mar 2016
Simultaneous Inference for High-dimensional Linear Models
Simultaneous Inference for High-dimensional Linear Models
Xianyang Zhang
Guang Cheng
11
133
0
03 Mar 2016
A Minimax Theory for Adaptive Data Analysis
A Minimax Theory for Adaptive Data Analysis
Yu-Xiang Wang
Jing Lei
S. Fienberg
23
18
0
13 Feb 2016
Granger Causality in Multi-variate Time Series using a Time Ordered
  Restricted Vector Autoregressive Model
Granger Causality in Multi-variate Time Series using a Time Ordered Restricted Vector Autoregressive Model
Elsa Siggiridou
D. Kugiumtzis
CML
24
97
0
11 Nov 2015
False Discoveries Occur Early on the Lasso Path
False Discoveries Occur Early on the Lasso Path
Weijie Su
M. Bogdan
Emmanuel Candes
24
180
0
05 Nov 2015
Uniform Asymptotic Inference and the Bootstrap After Model Selection
Uniform Asymptotic Inference and the Bootstrap After Model Selection
R. Tibshirani
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
27
104
0
20 Jun 2015
Selective inference with unknown variance via the square-root LASSO
Selective inference with unknown variance via the square-root LASSO
Xiaoying Tian
Joshua R. Loftus
Jonathan E. Taylor
35
38
0
29 Apr 2015
Adaptive Concentration of Regression Trees, with Application to Random
  Forests
Adaptive Concentration of Regression Trees, with Application to Random Forests
Stefan Wager
G. Walther
22
25
0
22 Mar 2015
Prediction error of cross-validated Lasso
Prediction error of cross-validated Lasso
S. Chatterjee
Jafar Jafarov
48
42
0
23 Feb 2015
A sequential rejection testing method for high-dimensional regression
  with correlated variables
A sequential rejection testing method for high-dimensional regression with correlated variables
Jacopo Mandozzi
Peter Buhlmann
39
10
0
11 Feb 2015
Asymptotics of selective inference
Asymptotics of selective inference
Xiaoying Tian
Jonathan E. Taylor
29
68
0
15 Jan 2015
High Dimensional Expectation-Maximization Algorithm: Statistical
  Optimization and Asymptotic Normality
High Dimensional Expectation-Maximization Algorithm: Statistical Optimization and Asymptotic Normality
Zhaoran Wang
Quanquan Gu
Y. Ning
Han Liu
30
53
0
30 Dec 2014
A General Framework for Robust Testing and Confidence Regions in
  High-Dimensional Quantile Regression
A General Framework for Robust Testing and Confidence Regions in High-Dimensional Quantile Regression
Tianqi Zhao
Mladen Kolar
Han Liu
33
43
0
30 Dec 2014
Testing and Confidence Intervals for High Dimensional Proportional
  Hazards Model
Testing and Confidence Intervals for High Dimensional Proportional Hazards Model
Ethan X. Fang
Y. Ning
Han Liu
31
71
0
16 Dec 2014
The Benefit of Group Sparsity in Group Inference with De-biased Scaled
  Group Lasso
The Benefit of Group Sparsity in Group Inference with De-biased Scaled Group Lasso
Ritwik Mitra
Cun-Hui Zhang
39
46
0
13 Dec 2014
Optimal Inference After Model Selection
Optimal Inference After Model Selection
William Fithian
Dennis L. Sun
Jonathan E. Taylor
29
332
0
09 Oct 2014
A Permutation Approach for Selecting the Penalty Parameter in Penalized
  Model Selection
A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection
Jeremy A. Sabourin
W. Valdar
A. Nobel
28
35
0
08 Apr 2014
Collaborative Regression
Collaborative Regression
Samuel M. Gross
Robert Tibshirani
36
57
0
22 Jan 2014
Hypothesis Testing in High-Dimensional Regression under the Gaussian
  Random Design Model: Asymptotic Theory
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory
Adel Javanmard
Andrea Montanari
104
160
0
17 Jan 2013
Near-ideal model selection by $\ell_1$ minimization
Near-ideal model selection by ℓ1\ell_1ℓ1​ minimization
Emmanuel J. Candès
Y. Plan
123
216
0
02 Jan 2008
1