ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.5158
31
71

Testing and Confidence Intervals for High Dimensional Proportional Hazards Model

16 December 2014
Ethan X. Fang
Y. Ning
Han Liu
ArXivPDFHTML
Abstract

This paper proposes a decorrelation-based approach to test hypotheses and construct confidence intervals for the low dimensional component of high dimensional proportional hazards models. Motivated by the geometric projection principle, we propose new decorrelated score, Wald and partial likelihood ratio statistics. Without assuming model selection consistency, we prove the asymptotic normality of these test statistics, establish their semiparametric optimality. We also develop new procedures for constructing pointwise confidence intervals for the baseline hazard function and baseline survival function. Thorough numerical results are provided to back up our theory.

View on arXiv
Comments on this paper