Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.3584
Cited By
Revisiting Natural Gradient for Deep Networks
16 January 2013
Razvan Pascanu
Yoshua Bengio
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Revisiting Natural Gradient for Deep Networks"
29 / 229 papers shown
Title
Reducing the Model Order of Deep Neural Networks Using Information Theory
Ming Tu
Visar Berisha
Yu Cao
Jae-sun Seo
11
23
0
16 May 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
19
5,481
0
23 Nov 2015
Data-Dependent Path Normalization in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Ruslan Salakhutdinov
Nathan Srebro
21
22
0
20 Nov 2015
Symmetry-invariant optimization in deep networks
Vijay Badrinarayanan
Bamdev Mishra
R. Cipolla
ODL
19
31
0
05 Nov 2015
adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs
N. Keskar
A. Berahas
ODL
9
34
0
04 Nov 2015
Understanding symmetries in deep networks
Vijay Badrinarayanan
Bamdev Mishra
R. Cipolla
221
42
0
03 Nov 2015
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark W. Schmidt
Masashi Sugiyama
28
49
0
31 Oct 2015
Hessian-free Optimization for Learning Deep Multidimensional Recurrent Neural Networks
Minhyung Cho
C. Dhir
Jaehyung Lee
11
8
0
11 Sep 2015
Fast Second-Order Stochastic Backpropagation for Variational Inference
Kai Fan
Ziteng Wang
J. Beck
James T. Kwok
Katherine A. Heller
ODL
BDL
DRL
23
45
0
09 Sep 2015
Training Conditional Random Fields with Natural Gradient Descent
Yuan Cao
BDL
14
0
0
10 Aug 2015
Natural Neural Networks
Guillaume Desjardins
Karen Simonyan
Razvan Pascanu
Koray Kavukcuoglu
17
176
0
01 Jul 2015
Faster SGD Using Sketched Conditioning
Alon Gonen
Shai Shalev-Shwartz
18
16
0
08 Jun 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
33
984
0
19 Mar 2015
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
32
6,664
0
19 Feb 2015
Equilibrated adaptive learning rates for non-convex optimization
Yann N. Dauphin
H. D. Vries
Yoshua Bengio
ODL
22
375
0
15 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
22
148,823
0
22 Dec 2014
New insights and perspectives on the natural gradient method
James Martens
ODL
17
602
0
03 Dec 2014
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Yann N. Dauphin
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
ODL
29
1,376
0
10 Jun 2014
Iterative Neural Autoregressive Distribution Estimator (NADE-k)
T. Raiko
L. Yao
Kyunghyun Cho
Yoshua Bengio
24
42
0
05 Jun 2014
On the saddle point problem for non-convex optimization
Razvan Pascanu
Yann N. Dauphin
Surya Ganguli
Yoshua Bengio
ODL
29
105
0
19 May 2014
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
29
1,239
0
08 Feb 2014
How to Construct Deep Recurrent Neural Networks
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
48
1,008
0
20 Dec 2013
Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks
Çağlar Gülçehre
Kyunghyun Cho
Razvan Pascanu
Yoshua Bengio
40
170
0
07 Nov 2013
SKYNET: an efficient and robust neural network training tool for machine learning in astronomy
P. Graff
F. Feroz
Michael P. Hobson
A. Lasenby
33
95
0
03 Sep 2013
Riemannian metrics for neural networks II: recurrent networks and learning symbolic data sequences
Yann Ollivier
31
17
0
03 Jun 2013
Deep Learning of Representations: Looking Forward
Yoshua Bengio
40
680
0
02 May 2013
Riemannian metrics for neural networks I: feedforward networks
Yann Ollivier
31
102
0
04 Mar 2013
Training Neural Networks with Stochastic Hessian-Free Optimization
Ryan Kiros
BDL
49
48
0
16 Jan 2013
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
29
12,331
0
24 Jun 2012
Previous
1
2
3
4
5