Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.3584
Cited By
Revisiting Natural Gradient for Deep Networks
16 January 2013
Razvan Pascanu
Yoshua Bengio
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Revisiting Natural Gradient for Deep Networks"
50 / 229 papers shown
Title
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
A Bayesian Federated Learning Framework with Online Laplace Approximation
Liang Liu
Xi Jiang
Feng Zheng
Hong Chen
Guo-Jun Qi
Heng-Chiao Huang
Ling Shao
FedML
43
53
0
03 Feb 2021
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
17
13
0
15 Dec 2020
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent
Kangqiao Liu
Liu Ziyin
Masakuni Ueda
MLT
57
37
0
07 Dec 2020
Natural-gradient learning for spiking neurons
Elena Kreutzer
Walter Senn
Mihai A. Petrovici
11
13
0
23 Nov 2020
Two-Level K-FAC Preconditioning for Deep Learning
N. Tselepidis
Jonas Köhler
Antonio Orvieto
ODL
11
2
0
01 Nov 2020
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Juntang Zhuang
Tommy M. Tang
Yifan Ding
S. Tatikonda
Nicha Dvornek
X. Papademetris
James S. Duncan
ODL
6
499
0
15 Oct 2020
Expectigrad: Fast Stochastic Optimization with Robust Convergence Properties
Brett Daley
Chris Amato
ODL
11
4
0
03 Oct 2020
Understanding Approximate Fisher Information for Fast Convergence of Natural Gradient Descent in Wide Neural Networks
Ryo Karakida
Kazuki Osawa
9
25
0
02 Oct 2020
Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra
V. Papyan
8
77
0
27 Aug 2020
HEX and Neurodynamic Programming
Debangshu Banerjee
8
2
0
11 Aug 2020
Better Fine-Tuning by Reducing Representational Collapse
Armen Aghajanyan
Akshat Shrivastava
Anchit Gupta
Naman Goyal
Luke Zettlemoyer
S. Gupta
AAML
29
208
0
06 Aug 2020
CoNES: Convex Natural Evolutionary Strategies
Sushant Veer
Anirudha Majumdar
13
3
0
16 Jul 2020
Weak error analysis for stochastic gradient descent optimization algorithms
A. Bercher
Lukas Gonon
Arnulf Jentzen
Diyora Salimova
24
4
0
03 Jul 2020
Supermasks in Superposition
Mitchell Wortsman
Vivek Ramanujan
Rosanne Liu
Aniruddha Kembhavi
Mohammad Rastegari
J. Yosinski
Ali Farhadi
SSL
CLL
17
279
0
26 Jun 2020
Revisiting Loss Modelling for Unstructured Pruning
César Laurent
Camille Ballas
Thomas George
Nicolas Ballas
Pascal Vincent
20
14
0
22 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
34
32
0
18 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
29
48
0
16 Jun 2020
The Spectrum of Fisher Information of Deep Networks Achieving Dynamical Isometry
Tomohiro Hayase
Ryo Karakida
22
7
0
14 Jun 2020
Unifying Regularisation Methods for Continual Learning
Frederik Benzing
CLL
8
8
0
11 Jun 2020
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
13
43
0
05 Jun 2020
Machine Learning for Condensed Matter Physics
Edwin Bedolla
L. C. Padierna
R. Castañeda-Priego
AI4CE
15
66
0
28 May 2020
Continual Learning with Extended Kronecker-factored Approximate Curvature
Janghyeon Lee
H. Hong
Donggyu Joo
Junmo Kim
CLL
9
52
0
16 Apr 2020
Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of DNNs
Lei Huang
Jie Qin
Li Liu
Fan Zhu
Ling Shao
AI4CE
20
11
0
25 Feb 2020
Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent
Pu Zhao
Pin-Yu Chen
Siyue Wang
X. Lin
AAML
6
36
0
18 Feb 2020
Second-order Information in First-order Optimization Methods
Yuzheng Hu
Licong Lin
Shange Tang
ODL
28
2
0
20 Dec 2019
Overcoming Long-term Catastrophic Forgetting through Adversarial Neural Pruning and Synaptic Consolidation
Jian-wei Peng
Bo Tang
Jiang Hao
Zhuo Li
Yinjie Lei
Tao R. Lin
Haifeng Li
AAML
CLL
25
36
0
19 Dec 2019
LOGAN: Latent Optimisation for Generative Adversarial Networks
Y. Wu
Jeff Donahue
David Balduzzi
Karen Simonyan
Timothy Lillicrap
GAN
8
88
0
02 Dec 2019
Automatic Differentiable Monte Carlo: Theory and Application
Shi-Xin Zhang
Z. Wan
H. Yao
6
17
0
20 Nov 2019
Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding
Yongqi Zhang
Quanming Yao
Lei Chen
14
4
0
17 Nov 2019
Searching to Exploit Memorization Effect in Learning from Corrupted Labels
Quanming Yao
Hansi Yang
Bo Han
Gang Niu
James T. Kwok
NoLa
11
16
0
06 Nov 2019
Pathological spectra of the Fisher information metric and its variants in deep neural networks
Ryo Karakida
S. Akaho
S. Amari
17
27
0
14 Oct 2019
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation
S. Meng
Sharan Vaswani
I. Laradji
Mark W. Schmidt
Simon Lacoste-Julien
11
32
0
11 Oct 2019
The asymptotic spectrum of the Hessian of DNN throughout training
Arthur Jacot
Franck Gabriel
Clément Hongler
11
35
0
01 Oct 2019
A continual learning survey: Defying forgetting in classification tasks
Matthias De Lange
Rahaf Aljundi
Marc Masana
Sarah Parisot
Xu Jia
A. Leonardis
Greg Slabaugh
Tinne Tuytelaars
CLL
KELM
12
246
0
18 Sep 2019
Meta-Learning with Warped Gradient Descent
Sebastian Flennerhag
Andrei A. Rusu
Razvan Pascanu
Francesco Visin
Hujun Yin
R. Hadsell
6
209
0
30 Aug 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Ryo Karakida
S. Akaho
S. Amari
19
39
0
07 Jun 2019
Understanding Adversarial Behavior of DNNs by Disentangling Non-Robust and Robust Components in Performance Metric
Yujun Shi
B. Liao
Guangyong Chen
Yun-Hai Liu
Ming-Ming Cheng
Jiashi Feng
AAML
4
2
0
06 Jun 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
19
207
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
16
57
0
28 May 2019
A Geometric Modeling of Occam's Razor in Deep Learning
Ke Sun
Frank Nielsen
9
4
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
11
124
0
27 May 2019
Adaptive norms for deep learning with regularized Newton methods
Jonas Köhler
Leonard Adolphs
Aurélien Lucchi
ODL
9
11
0
22 May 2019
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
Chaoqi Wang
Roger C. Grosse
Sanja Fidler
Guodong Zhang
21
121
0
15 May 2019
NGO-GM: Natural Gradient Optimization for Graphical Models
Eric Benhamou
Jamal Atif
R. Laraki
David Saltiel
8
1
0
14 May 2019
Facilitating Bayesian Continual Learning by Natural Gradients and Stein Gradients
Yu Chen
Tom Diethe
Neil D. Lawrence
CLL
BDL
6
13
0
24 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
17
101
0
02 Apr 2019
Fisher-Bures Adversary Graph Convolutional Networks
Ke Sun
Piotr Koniusz
Zhen Wang
GNN
19
34
0
11 Mar 2019
A Formalization of The Natural Gradient Method for General Similarity Measures
Anton Mallasto
T. D. Haije
Aasa Feragen
11
4
0
24 Feb 2019
Overcoming Multi-Model Forgetting
Yassine Benyahia
Kaicheng Yu
Kamil Bennani-Smires
Martin Jaggi
A. Davison
Mathieu Salzmann
C. Musat
MoMe
KELM
CLL
27
37
0
21 Feb 2019
Previous
1
2
3
4
5
Next