ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.3584
  4. Cited By
Revisiting Natural Gradient for Deep Networks

Revisiting Natural Gradient for Deep Networks

16 January 2013
Razvan Pascanu
Yoshua Bengio
    ODL
ArXivPDFHTML

Papers citing "Revisiting Natural Gradient for Deep Networks"

50 / 229 papers shown
Title
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
A Bayesian Federated Learning Framework with Online Laplace
  Approximation
A Bayesian Federated Learning Framework with Online Laplace Approximation
Liang Liu
Xi Jiang
Feng Zheng
Hong Chen
Guo-Jun Qi
Heng-Chiao Huang
Ling Shao
FedML
43
53
0
03 Feb 2021
Are we Forgetting about Compositional Optimisers in Bayesian
  Optimisation?
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
17
13
0
15 Dec 2020
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient
  Descent
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent
Kangqiao Liu
Liu Ziyin
Masakuni Ueda
MLT
57
37
0
07 Dec 2020
Natural-gradient learning for spiking neurons
Natural-gradient learning for spiking neurons
Elena Kreutzer
Walter Senn
Mihai A. Petrovici
11
13
0
23 Nov 2020
Two-Level K-FAC Preconditioning for Deep Learning
Two-Level K-FAC Preconditioning for Deep Learning
N. Tselepidis
Jonas Köhler
Antonio Orvieto
ODL
11
2
0
01 Nov 2020
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed
  Gradients
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Juntang Zhuang
Tommy M. Tang
Yifan Ding
S. Tatikonda
Nicha Dvornek
X. Papademetris
James S. Duncan
ODL
6
499
0
15 Oct 2020
Expectigrad: Fast Stochastic Optimization with Robust Convergence
  Properties
Expectigrad: Fast Stochastic Optimization with Robust Convergence Properties
Brett Daley
Chris Amato
ODL
11
4
0
03 Oct 2020
Understanding Approximate Fisher Information for Fast Convergence of
  Natural Gradient Descent in Wide Neural Networks
Understanding Approximate Fisher Information for Fast Convergence of Natural Gradient Descent in Wide Neural Networks
Ryo Karakida
Kazuki Osawa
9
25
0
02 Oct 2020
Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra
Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra
V. Papyan
8
77
0
27 Aug 2020
HEX and Neurodynamic Programming
HEX and Neurodynamic Programming
Debangshu Banerjee
8
2
0
11 Aug 2020
Better Fine-Tuning by Reducing Representational Collapse
Better Fine-Tuning by Reducing Representational Collapse
Armen Aghajanyan
Akshat Shrivastava
Anchit Gupta
Naman Goyal
Luke Zettlemoyer
S. Gupta
AAML
29
208
0
06 Aug 2020
CoNES: Convex Natural Evolutionary Strategies
CoNES: Convex Natural Evolutionary Strategies
Sushant Veer
Anirudha Majumdar
13
3
0
16 Jul 2020
Weak error analysis for stochastic gradient descent optimization
  algorithms
Weak error analysis for stochastic gradient descent optimization algorithms
A. Bercher
Lukas Gonon
Arnulf Jentzen
Diyora Salimova
24
4
0
03 Jul 2020
Supermasks in Superposition
Supermasks in Superposition
Mitchell Wortsman
Vivek Ramanujan
Rosanne Liu
Aniruddha Kembhavi
Mohammad Rastegari
J. Yosinski
Ali Farhadi
SSL
CLL
17
279
0
26 Jun 2020
Revisiting Loss Modelling for Unstructured Pruning
Revisiting Loss Modelling for Unstructured Pruning
César Laurent
Camille Ballas
Thomas George
Nicolas Ballas
Pascal Vincent
20
14
0
22 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
34
32
0
18 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory
  Approach to Neural Network Training
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
29
48
0
16 Jun 2020
The Spectrum of Fisher Information of Deep Networks Achieving Dynamical
  Isometry
The Spectrum of Fisher Information of Deep Networks Achieving Dynamical Isometry
Tomohiro Hayase
Ryo Karakida
22
7
0
14 Jun 2020
Unifying Regularisation Methods for Continual Learning
Unifying Regularisation Methods for Continual Learning
Frederik Benzing
CLL
8
8
0
11 Jun 2020
Structure preserving deep learning
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
13
43
0
05 Jun 2020
Machine Learning for Condensed Matter Physics
Machine Learning for Condensed Matter Physics
Edwin Bedolla
L. C. Padierna
R. Castañeda-Priego
AI4CE
15
66
0
28 May 2020
Continual Learning with Extended Kronecker-factored Approximate
  Curvature
Continual Learning with Extended Kronecker-factored Approximate Curvature
Janghyeon Lee
H. Hong
Donggyu Joo
Junmo Kim
CLL
9
52
0
16 Apr 2020
Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of
  DNNs
Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of DNNs
Lei Huang
Jie Qin
Li Liu
Fan Zhu
Ling Shao
AI4CE
20
11
0
25 Feb 2020
Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
  Gradient Descent
Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent
Pu Zhao
Pin-Yu Chen
Siyue Wang
X. Lin
AAML
6
36
0
18 Feb 2020
Second-order Information in First-order Optimization Methods
Second-order Information in First-order Optimization Methods
Yuzheng Hu
Licong Lin
Shange Tang
ODL
28
2
0
20 Dec 2019
Overcoming Long-term Catastrophic Forgetting through Adversarial Neural
  Pruning and Synaptic Consolidation
Overcoming Long-term Catastrophic Forgetting through Adversarial Neural Pruning and Synaptic Consolidation
Jian-wei Peng
Bo Tang
Jiang Hao
Zhuo Li
Yinjie Lei
Tao R. Lin
Haifeng Li
AAML
CLL
25
36
0
19 Dec 2019
LOGAN: Latent Optimisation for Generative Adversarial Networks
LOGAN: Latent Optimisation for Generative Adversarial Networks
Y. Wu
Jeff Donahue
David Balduzzi
Karen Simonyan
Timothy Lillicrap
GAN
8
88
0
02 Dec 2019
Automatic Differentiable Monte Carlo: Theory and Application
Automatic Differentiable Monte Carlo: Theory and Application
Shi-Xin Zhang
Z. Wan
H. Yao
6
17
0
20 Nov 2019
Interstellar: Searching Recurrent Architecture for Knowledge Graph
  Embedding
Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding
Yongqi Zhang
Quanming Yao
Lei Chen
14
4
0
17 Nov 2019
Searching to Exploit Memorization Effect in Learning from Corrupted
  Labels
Searching to Exploit Memorization Effect in Learning from Corrupted Labels
Quanming Yao
Hansi Yang
Bo Han
Gang Niu
James T. Kwok
NoLa
11
16
0
06 Nov 2019
Pathological spectra of the Fisher information metric and its variants
  in deep neural networks
Pathological spectra of the Fisher information metric and its variants in deep neural networks
Ryo Karakida
S. Akaho
S. Amari
17
27
0
14 Oct 2019
Fast and Furious Convergence: Stochastic Second Order Methods under
  Interpolation
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation
S. Meng
Sharan Vaswani
I. Laradji
Mark W. Schmidt
Simon Lacoste-Julien
11
32
0
11 Oct 2019
The asymptotic spectrum of the Hessian of DNN throughout training
The asymptotic spectrum of the Hessian of DNN throughout training
Arthur Jacot
Franck Gabriel
Clément Hongler
11
35
0
01 Oct 2019
A continual learning survey: Defying forgetting in classification tasks
A continual learning survey: Defying forgetting in classification tasks
Matthias De Lange
Rahaf Aljundi
Marc Masana
Sarah Parisot
Xu Jia
A. Leonardis
Greg Slabaugh
Tinne Tuytelaars
CLL
KELM
12
246
0
18 Sep 2019
Meta-Learning with Warped Gradient Descent
Meta-Learning with Warped Gradient Descent
Sebastian Flennerhag
Andrei A. Rusu
Razvan Pascanu
Francesco Visin
Hujun Yin
R. Hadsell
6
209
0
30 Aug 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide
  Neural Networks
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Ryo Karakida
S. Akaho
S. Amari
19
39
0
07 Jun 2019
Understanding Adversarial Behavior of DNNs by Disentangling Non-Robust
  and Robust Components in Performance Metric
Understanding Adversarial Behavior of DNNs by Disentangling Non-Robust and Robust Components in Performance Metric
Yujun Shi
B. Liao
Guangyong Chen
Yun-Hai Liu
Ming-Ming Cheng
Jiashi Feng
AAML
4
2
0
06 Jun 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient
  Descent
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
19
207
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for
  Regression Problems
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
16
57
0
28 May 2019
A Geometric Modeling of Occam's Razor in Deep Learning
A Geometric Modeling of Occam's Razor in Deep Learning
Ke Sun
Frank Nielsen
9
4
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized
  Neural Networks
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
11
124
0
27 May 2019
Adaptive norms for deep learning with regularized Newton methods
Adaptive norms for deep learning with regularized Newton methods
Jonas Köhler
Leonard Adolphs
Aurélien Lucchi
ODL
9
11
0
22 May 2019
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
Chaoqi Wang
Roger C. Grosse
Sanja Fidler
Guodong Zhang
21
121
0
15 May 2019
NGO-GM: Natural Gradient Optimization for Graphical Models
NGO-GM: Natural Gradient Optimization for Graphical Models
Eric Benhamou
Jamal Atif
R. Laraki
David Saltiel
8
1
0
14 May 2019
Facilitating Bayesian Continual Learning by Natural Gradients and Stein
  Gradients
Facilitating Bayesian Continual Learning by Natural Gradients and Stein Gradients
Yu Chen
Tom Diethe
Neil D. Lawrence
CLL
BDL
6
13
0
24 Apr 2019
Convergence rates for the stochastic gradient descent method for
  non-convex objective functions
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
17
101
0
02 Apr 2019
Fisher-Bures Adversary Graph Convolutional Networks
Fisher-Bures Adversary Graph Convolutional Networks
Ke Sun
Piotr Koniusz
Zhen Wang
GNN
19
34
0
11 Mar 2019
A Formalization of The Natural Gradient Method for General Similarity
  Measures
A Formalization of The Natural Gradient Method for General Similarity Measures
Anton Mallasto
T. D. Haije
Aasa Feragen
11
4
0
24 Feb 2019
Overcoming Multi-Model Forgetting
Overcoming Multi-Model Forgetting
Yassine Benyahia
Kaicheng Yu
Kamil Bennani-Smires
Martin Jaggi
A. Davison
Mathieu Salzmann
C. Musat
MoMe
KELM
CLL
27
37
0
21 Feb 2019
Previous
12345
Next