ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.1299
  4. Cited By
Automated Variational Inference in Probabilistic Programming

Automated Variational Inference in Probabilistic Programming

7 January 2013
David Wingate
T. Weber
    BDL
    TPM
ArXivPDFHTML

Papers citing "Automated Variational Inference in Probabilistic Programming"

24 / 24 papers shown
Title
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept
  Statistics
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept Statistics
Masataro Asai
25
0
0
08 Sep 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
24
9
0
22 Aug 2022
TyXe: Pyro-based Bayesian neural nets for Pytorch
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OOD
MU
BDL
28
6
0
01 Oct 2021
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
  Supervised Lesion Detection
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and Supervised Lesion Detection
H. Akrami
Anand A. Joshi
Sergul Aydore
Richard M. Leahy
UQCV
39
4
0
20 Sep 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
27
20
0
21 Jun 2021
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
21
7
0
20 Oct 2020
CPAS: the UK's National Machine Learning-based Hospital Capacity
  Planning System for COVID-19
CPAS: the UK's National Machine Learning-based Hospital Capacity Planning System for COVID-19
Zhaozhi Qian
Ahmed Alaa
Mihaela van der Schaar
34
41
0
27 Jul 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
11
0
0
02 Mar 2020
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
Effect Handling for Composable Program Transformations in Edward2
Effect Handling for Composable Program Transformations in Edward2
Dave Moore
Maria I. Gorinova
6
15
0
15 Nov 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
26
31
0
20 Jul 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
19
30
0
01 Jun 2018
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
47
282
0
21 Mar 2017
Deep Amortized Inference for Probabilistic Programs
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
24
81
0
18 Oct 2016
Neurally-Guided Procedural Models: Amortized Inference for Procedural
  Graphics Programs using Neural Networks
Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks
Daniel E. Ritchie
Anna T. Thomas
Pat Hanrahan
Noah D. Goodman
TPM
28
11
0
19 Mar 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
22
47
0
03 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
38
709
0
02 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
38
4,710
0
04 Jan 2016
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
19
389
0
17 Jun 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
29
232
0
10 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
23
4,105
0
21 May 2015
1