ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.0873
  4. Cited By
Parallel Coordinate Descent Methods for Big Data Optimization

Parallel Coordinate Descent Methods for Big Data Optimization

4 December 2012
Peter Richtárik
Martin Takáč
ArXivPDFHTML

Papers citing "Parallel Coordinate Descent Methods for Big Data Optimization"

50 / 52 papers shown
Title
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
97
6
0
28 Jan 2025
A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent
A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent
Shuche Wang
Vincent Y. F. Tan
FedML
OOD
49
1
0
19 Jul 2024
Demystifying SGD with Doubly Stochastic Gradients
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
Adaptive Consensus: A network pruning approach for decentralized
  optimization
Adaptive Consensus: A network pruning approach for decentralized optimization
S. Shah
A. Berahas
Raghu Bollapragada
22
2
0
06 Sep 2023
Laplacian-based Semi-Supervised Learning in Multilayer Hypergraphs by
  Coordinate Descent
Laplacian-based Semi-Supervised Learning in Multilayer Hypergraphs by Coordinate Descent
Sara Venturini
Andrea Cristofari
Francesco Rinaldi
Francesco Tudisco
39
2
0
28 Jan 2023
FedADMM: A Federated Primal-Dual Algorithm Allowing Partial
  Participation
FedADMM: A Federated Primal-Dual Algorithm Allowing Partial Participation
Han Wang
Siddartha Marella
James Anderson
FedML
14
39
0
28 Mar 2022
A dual approach for federated learning
A dual approach for federated learning
Zhenan Fan
Huang Fang
M. Friedlander
FedML
18
3
0
26 Jan 2022
Cyclic Coordinate Dual Averaging with Extrapolation
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
27
6
0
26 Feb 2021
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
On the Convergence of SGD with Biased Gradients
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
6
83
0
31 Jul 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
11
10
0
06 Jun 2020
Columnwise Element Selection for Computationally Efficient Nonnegative
  Coupled Matrix Tensor Factorization
Columnwise Element Selection for Computationally Efficient Nonnegative Coupled Matrix Tensor Factorization
Thirunavukarasu Balasubramaniam
R. Nayak
Chau Yuen
13
7
0
07 Mar 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic
  Gradient Methods
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal
  Sampling
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
38
20
0
25 Oct 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to
  Fix it
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Accelerated Decentralized Optimization with Local Updates for Smooth and
  Strongly Convex Objectives
Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
13
42
0
05 Oct 2018
Algorithms for solving optimization problems arising from deep neural
  net models: smooth problems
Algorithms for solving optimization problems arising from deep neural net models: smooth problems
Vyacheslav Kungurtsev
Tomás Pevný
21
6
0
30 Jun 2018
Parallel and Distributed Successive Convex Approximation Methods for
  Big-Data Optimization
Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization
G. Scutari
Ying Sun
35
61
0
17 May 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton,
  Proximal Point and Subspace Descent Methods
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
200
0
27 Dec 2017
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
BDL
ODL
43
6
0
20 Nov 2017
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
36
127
0
11 Sep 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling
  and Imaging Applications
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
38
184
0
15 Jun 2017
Distributed Coordinate Descent for Generalized Linear Models with
  Regularization
Distributed Coordinate Descent for Generalized Linear Models with Regularization
I. Trofimov
A. Genkin
26
7
0
07 Nov 2016
Optimization for Large-Scale Machine Learning with Distributed Features
  and Observations
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
30
13
0
31 Oct 2016
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
23
10
0
29 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
66
1,878
0
08 Oct 2016
A Primer on Coordinate Descent Algorithms
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
37
90
0
30 Sep 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful
  Enterprise Gamification
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
29
62
0
29 May 2016
$\ell_1$ Adaptive Trend Filter via Fast Coordinate Descent
ℓ1\ell_1ℓ1​ Adaptive Trend Filter via Fast Coordinate Descent
Mario Souto
J. Garcia
G. Amaral
24
5
0
11 Mar 2016
Coordinate Friendly Structures, Algorithms and Applications
Coordinate Friendly Structures, Algorithms and Applications
Zhimin Peng
Tianyu Wu
Yangyang Xu
Ming Yan
W. Yin
21
74
0
05 Jan 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle
  Point Problems
Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
Zhanxing Zhu
Amos J. Storkey
ODL
27
19
0
12 Jun 2015
ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate
  Updates
ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate Updates
Zhimin Peng
Yangyang Xu
Ming Yan
W. Yin
22
257
0
08 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
30
273
0
16 Apr 2015
Convex Optimization for Parallel Energy Minimization
Convex Optimization for Parallel Energy Minimization
K. S. S. Kumar
Á. Jiménez
Stefanie Jegelka
S. Sra
Francis R. Bach
31
9
0
05 Mar 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
29
176
0
12 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable
  Overapproximation
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
41
83
0
27 Dec 2014
Accelerated Parallel Optimization Methods for Large Scale Machine
  Learning
Accelerated Parallel Optimization Methods for Large Scale Machine Learning
Haipeng Luo
P. Haffner
Jean-François Paiement
23
7
0
25 Nov 2014
Distributed Coordinate Descent for L1-regularized Logistic Regression
Distributed Coordinate Descent for L1-regularized Logistic Regression
I. Trofimov
A. Genkin
20
15
0
24 Nov 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
38
58
0
21 Nov 2014
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk
  Minimization
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
43
261
0
10 Sep 2014
Large-scale randomized-coordinate descent methods with non-separable
  linear constraints
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi
Ahmed S. Hefny
Carlton Downey
Kumar Avinava Dubey
S. Sra
26
19
0
09 Sep 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
35
353
0
04 Sep 2014
Matrix Completion under Interval Uncertainty
Matrix Completion under Interval Uncertainty
Jakub Mareˇcek
Peter Richtárik
Martin Takáč
48
19
0
11 Aug 2014
Semi-Stochastic Gradient Descent Methods
Semi-Stochastic Gradient Descent Methods
Jakub Konecný
Peter Richtárik
ODL
62
237
0
05 Dec 2013
Flexible Parallel Algorithms for Big Data Optimization
Flexible Parallel Algorithms for Big Data Optimization
F. Facchinei
Simone Sagratella
G. Scutari
43
30
0
11 Nov 2013
Distributed Coordinate Descent Method for Learning with Big Data
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
50
253
0
08 Oct 2013
Parallel coordinate descent for the Adaboost problem
Parallel coordinate descent for the Adaboost problem
Olivier Fercoq
ODL
42
11
0
07 Oct 2013
On the Complexity Analysis of Randomized Block-Coordinate Descent
  Methods
On the Complexity Analysis of Randomized Block-Coordinate Descent Methods
Zhaosong Lu
Lin Xiao
35
254
0
21 May 2013
12
Next