ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1305.4723
33
254

On the Complexity Analysis of Randomized Block-Coordinate Descent Methods

21 May 2013
Zhaosong Lu
Lin Xiao
ArXivPDFHTML
Abstract

In this paper we analyze the randomized block-coordinate descent (RBCD) methods proposed in [8,11] for minimizing the sum of a smooth convex function and a block-separable convex function. In particular, we extend Nesterov's technique developed in [8] for analyzing the RBCD method for minimizing a smooth convex function over a block-separable closed convex set to the aforementioned more general problem and obtain a sharper expected-value type of convergence rate than the one implied in [11]. Also, we obtain a better high-probability type of iteration complexity, which improves upon the one in [11] by at least the amount O(n/ϵ)O(n/\epsilon)O(n/ϵ), where ϵ\epsilonϵ is the target solution accuracy and nnn is the number of problem blocks. In addition, for unconstrained smooth convex minimization, we develop a new technique called {\it randomized estimate sequence} to analyze the accelerated RBCD method proposed by Nesterov [11] and establish a sharper expected-value type of convergence rate than the one given in [11].

View on arXiv
Comments on this paper