Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1212.0873
Cited By
Parallel Coordinate Descent Methods for Big Data Optimization
4 December 2012
Peter Richtárik
Martin Takáč
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parallel Coordinate Descent Methods for Big Data Optimization"
50 / 52 papers shown
Title
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
97
6
0
28 Jan 2025
A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent
Shuche Wang
Vincent Y. F. Tan
FedML
OOD
49
1
0
19 Jul 2024
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
Adaptive Consensus: A network pruning approach for decentralized optimization
S. Shah
A. Berahas
Raghu Bollapragada
22
2
0
06 Sep 2023
Laplacian-based Semi-Supervised Learning in Multilayer Hypergraphs by Coordinate Descent
Sara Venturini
Andrea Cristofari
Francesco Rinaldi
Francesco Tudisco
39
2
0
28 Jan 2023
FedADMM: A Federated Primal-Dual Algorithm Allowing Partial Participation
Han Wang
Siddartha Marella
James Anderson
FedML
14
39
0
28 Mar 2022
A dual approach for federated learning
Zhenan Fan
Huang Fang
M. Friedlander
FedML
18
3
0
26 Jan 2022
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
27
6
0
26 Feb 2021
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
6
83
0
31 Jul 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
11
10
0
06 Jun 2020
Columnwise Element Selection for Computationally Efficient Nonnegative Coupled Matrix Tensor Factorization
Thirunavukarasu Balasubramaniam
R. Nayak
Chau Yuen
13
7
0
07 Mar 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
38
20
0
25 Oct 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
13
42
0
05 Oct 2018
Algorithms for solving optimization problems arising from deep neural net models: smooth problems
Vyacheslav Kungurtsev
Tomás Pevný
21
6
0
30 Jun 2018
Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization
G. Scutari
Ying Sun
35
61
0
17 May 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
200
0
27 Dec 2017
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
BDL
ODL
43
6
0
20 Nov 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
36
127
0
11 Sep 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
38
184
0
15 Jun 2017
Distributed Coordinate Descent for Generalized Linear Models with Regularization
I. Trofimov
A. Genkin
26
7
0
07 Nov 2016
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
30
13
0
31 Oct 2016
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
23
10
0
29 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
63
1,878
0
08 Oct 2016
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
37
90
0
30 Sep 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
29
62
0
29 May 2016
ℓ
1
\ell_1
ℓ
1
Adaptive Trend Filter via Fast Coordinate Descent
Mario Souto
J. Garcia
G. Amaral
24
5
0
11 Mar 2016
Coordinate Friendly Structures, Algorithms and Applications
Zhimin Peng
Tianyu Wu
Yangyang Xu
Ming Yan
W. Yin
19
74
0
05 Jan 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
Zhanxing Zhu
Amos J. Storkey
ODL
27
19
0
12 Jun 2015
ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate Updates
Zhimin Peng
Yangyang Xu
Ming Yan
W. Yin
19
257
0
08 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
30
273
0
16 Apr 2015
Convex Optimization for Parallel Energy Minimization
K. S. S. Kumar
Á. Jiménez
Stefanie Jegelka
S. Sra
Francis R. Bach
31
9
0
05 Mar 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
29
176
0
12 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
41
83
0
27 Dec 2014
Accelerated Parallel Optimization Methods for Large Scale Machine Learning
Haipeng Luo
P. Haffner
Jean-François Paiement
21
7
0
25 Nov 2014
Distributed Coordinate Descent for L1-regularized Logistic Regression
I. Trofimov
A. Genkin
18
15
0
24 Nov 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
38
58
0
21 Nov 2014
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
43
261
0
10 Sep 2014
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi
Ahmed S. Hefny
Carlton Downey
Kumar Avinava Dubey
S. Sra
23
19
0
09 Sep 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
35
353
0
04 Sep 2014
Matrix Completion under Interval Uncertainty
Jakub Mareˇcek
Peter Richtárik
Martin Takáč
48
19
0
11 Aug 2014
Semi-Stochastic Gradient Descent Methods
Jakub Konecný
Peter Richtárik
ODL
62
237
0
05 Dec 2013
Flexible Parallel Algorithms for Big Data Optimization
F. Facchinei
Simone Sagratella
G. Scutari
43
30
0
11 Nov 2013
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
50
253
0
08 Oct 2013
Parallel coordinate descent for the Adaboost problem
Olivier Fercoq
ODL
42
11
0
07 Oct 2013
On the Complexity Analysis of Randomized Block-Coordinate Descent Methods
Zhaosong Lu
Lin Xiao
33
254
0
21 May 2013
1
2
Next