Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.6679
Cited By
Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression
28 June 2012
Tim Salimans
David A. Knowles
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression"
46 / 46 papers shown
Title
Variational Bayesian Adaptive Learning of Deep Latent Variables for Acoustic Knowledge Transfer
Hu Hu
Sabato Marco Siniscalchi
Chao-Han Huck Yang
Chin-Hui Lee
80
0
0
28 Jan 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
51
4
0
30 Jun 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Unsupervised Object-Centric Learning from Multiple Unspecified Viewpoints
Jinyang Yuan
Tonglin Chen
Zhimeng Shen
Bin Li
Xiangyang Xue
OCL
33
2
0
03 Jan 2024
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
The Lie-Group Bayesian Learning Rule
E. M. Kıral
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
23
2
0
08 Mar 2023
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
13
15
0
13 Jun 2022
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
19
12
0
24 Feb 2022
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
28
93
0
04 Oct 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
63
73
0
09 Jul 2021
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
15
10
0
08 Jun 2020
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
36
5
0
02 Jun 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
121
54
0
23 Mar 2020
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Raphaël Dang-Nhu
Gagandeep Singh
Pavol Bielik
Martin Vechev
AI4TS
AAML
39
20
0
08 Mar 2020
Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured 2D Data
Sebastian Lunz
Yingzhen Li
Andrew Fitzgibbon
Nate Kushman
3DV
GAN
17
54
0
28 Feb 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
BDL
37
35
0
24 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
17
23
0
10 Feb 2020
A Recurrent Variational Autoencoder for Speech Enhancement
Simon Leglaive
Xavier Alameda-Pineda
Laurent Girin
Radu Horaud
DRL
12
78
0
24 Oct 2019
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
11
44
0
04 Oct 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
29
15
0
22 Jun 2019
Encoding prior knowledge in the structure of the likelihood
Jakob Knollmüller
T. Ensslin
36
11
0
11 Dec 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Fast yet Simple Natural-Gradient Descent for Variational Inference in Complex Models
Mohammad Emtiyaz Khan
Didrik Nielsen
BDL
34
62
0
12 Jul 2018
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
35
121
0
28 May 2018
Gaussian variational approximation for high-dimensional state space models
M. Quiroz
David J. Nott
Robert Kohn
24
40
0
24 Jan 2018
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Variational Continual Learning
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLL
VLM
BDL
36
728
0
29 Oct 2017
Reparameterizing the Birkhoff Polytope for Variational Permutation Inference
Scott W. Linderman
Gonzalo E. Mena
H. Cooper
Liam Paninski
John P. Cunningham
18
50
0
26 Oct 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
21
454
0
06 Mar 2017
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
25
107
0
18 Oct 2016
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
30
76
0
18 May 2016
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
22
47
0
03 Mar 2016
Black-box
α
α
α
-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
21
137
0
10 Nov 2015
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
14
335
0
07 Nov 2015
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark W. Schmidt
Masashi Sugiyama
28
49
0
31 Oct 2015
Stochastic gradient variational Bayes for gamma approximating distributions
David A. Knowles
BDL
14
50
0
04 Sep 2015
Correlated Random Measures
Rajesh Ranganath
David M. Blei
22
21
0
02 Jul 2015
Copula variational inference
Dustin Tran
David M. Blei
E. Airoldi
18
5
0
10 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
49
1,493
0
08 Jun 2015
Diversifying Sparsity Using Variational Determinantal Point Processes
N. Batmanghelich
G. Quon
Alex Kulesza
Manolis Kellis
Polina Golland
L. Bornn
25
14
0
23 Nov 2014
Structured Stochastic Variational Inference
Matthew D. Hoffman
David M. Blei
BDL
26
87
0
16 Apr 2014
1