ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6679
  4. Cited By
Fixed-Form Variational Posterior Approximation through Stochastic Linear
  Regression

Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression

28 June 2012
Tim Salimans
David A. Knowles
ArXivPDFHTML

Papers citing "Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression"

46 / 46 papers shown
Title
Variational Bayesian Adaptive Learning of Deep Latent Variables for Acoustic Knowledge Transfer
Hu Hu
Sabato Marco Siniscalchi
Chao-Han Huck Yang
Chin-Hui Lee
80
0
0
28 Jan 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
Particle Semi-Implicit Variational Inference
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
51
4
0
30 Jun 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Unsupervised Object-Centric Learning from Multiple Unspecified
  Viewpoints
Unsupervised Object-Centric Learning from Multiple Unspecified Viewpoints
Jinyang Yuan
Tonglin Chen
Zhimeng Shen
Bin Li
Xiangyang Xue
OCL
33
2
0
03 Jan 2024
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
The Lie-Group Bayesian Learning Rule
The Lie-Group Bayesian Learning Rule
E. M. Kıral
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
23
2
0
08 Mar 2023
Bayesian Learning for Neural Networks: an algorithmic survey
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
SIXO: Smoothing Inference with Twisted Objectives
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
13
15
0
13 Jun 2022
MixFlows: principled variational inference via mixed flows
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
19
12
0
24 Feb 2022
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
28
93
0
04 Oct 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
63
73
0
09 Jul 2021
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
  Variance Parameterization
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
15
10
0
08 Jun 2020
The role of exchangeability in causal inference
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
36
5
0
02 Jun 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
121
54
0
23 Mar 2020
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Raphaël Dang-Nhu
Gagandeep Singh
Pavol Bielik
Martin Vechev
AI4TS
AAML
39
20
0
08 Mar 2020
Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured
  2D Data
Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured 2D Data
Sebastian Lunz
Yingzhen Li
Andrew Fitzgibbon
Nate Kushman
3DV
GAN
17
54
0
28 Feb 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
BDL
37
35
0
24 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
17
23
0
10 Feb 2020
A Recurrent Variational Autoencoder for Speech Enhancement
A Recurrent Variational Autoencoder for Speech Enhancement
Simon Leglaive
Xavier Alameda-Pineda
Laurent Girin
Radu Horaud
DRL
12
78
0
24 Oct 2019
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
11
44
0
04 Oct 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart
  and inverse Wishart processes
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
29
15
0
22 Jun 2019
Encoding prior knowledge in the structure of the likelihood
Encoding prior knowledge in the structure of the likelihood
Jakob Knollmüller
T. Ensslin
36
11
0
11 Dec 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Fast yet Simple Natural-Gradient Descent for Variational Inference in
  Complex Models
Fast yet Simple Natural-Gradient Descent for Variational Inference in Complex Models
Mohammad Emtiyaz Khan
Didrik Nielsen
BDL
34
62
0
12 Jul 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
35
121
0
28 May 2018
Gaussian variational approximation for high-dimensional state space
  models
Gaussian variational approximation for high-dimensional state space models
M. Quiroz
David J. Nott
Robert Kohn
24
40
0
24 Jan 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Variational Continual Learning
Variational Continual Learning
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLL
VLM
BDL
36
728
0
29 Oct 2017
Reparameterizing the Birkhoff Polytope for Variational Permutation
  Inference
Reparameterizing the Birkhoff Polytope for Variational Permutation Inference
Scott W. Linderman
Gonzalo E. Mena
H. Cooper
Liam Paninski
John P. Cunningham
18
50
0
26 Oct 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
21
454
0
06 Mar 2017
Reparameterization Gradients through Acceptance-Rejection Sampling
  Algorithms
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
25
107
0
18 Oct 2016
Gaussian variational approximation with sparse precision matrices
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
30
76
0
18 May 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
22
47
0
03 Mar 2016
Black-box $α$-divergence Minimization
Black-box ααα-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
21
137
0
10 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
14
335
0
07 Nov 2015
Faster Stochastic Variational Inference using Proximal-Gradient Methods
  with General Divergence Functions
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark W. Schmidt
Masashi Sugiyama
28
49
0
31 Oct 2015
Stochastic gradient variational Bayes for gamma approximating
  distributions
Stochastic gradient variational Bayes for gamma approximating distributions
David A. Knowles
BDL
14
50
0
04 Sep 2015
Correlated Random Measures
Correlated Random Measures
Rajesh Ranganath
David M. Blei
22
21
0
02 Jul 2015
Copula variational inference
Copula variational inference
Dustin Tran
David M. Blei
E. Airoldi
18
5
0
10 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
49
1,493
0
08 Jun 2015
Diversifying Sparsity Using Variational Determinantal Point Processes
Diversifying Sparsity Using Variational Determinantal Point Processes
N. Batmanghelich
G. Quon
Alex Kulesza
Manolis Kellis
Polina Golland
L. Bornn
25
14
0
23 Nov 2014
Structured Stochastic Variational Inference
Structured Stochastic Variational Inference
Matthew D. Hoffman
David M. Blei
BDL
26
87
0
16 Apr 2014
1