Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.2944
Cited By
Practical Bayesian Optimization of Machine Learning Algorithms
13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Bayesian Optimization of Machine Learning Algorithms"
50 / 2,248 papers shown
Title
Online Hyper-parameter Learning for Auto-Augmentation Strategy
Chen Lin
Minghao Guo
Chuming Li
Yuan Xin
Wei Wu
Dahua Lin
Wanli Ouyang
Junjie Yan
ODL
21
83
0
17 May 2019
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment
Chen Huang
Shuangfei Zhai
Walter A. Talbott
Miguel Angel Bautista
Shi Sun
Carlos Guestrin
J. Susskind
29
75
0
15 May 2019
Trajectory-Based Off-Policy Deep Reinforcement Learning
Andreas Doerr
Michael Volpp
Marc Toussaint
Sebastian Trimpe
Christian Daniel
OffRL
29
2
0
14 May 2019
Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
Daniel Ho
Eric Liang
Ion Stoica
Pieter Abbeel
Xi Chen
35
397
0
14 May 2019
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Aaron Klein
Frank Hutter
15
91
0
13 May 2019
Bayesian Optimized Continual Learning with Attention Mechanism
Ju Xu
Jin Ma
Zhanxing Zhu
CLL
BDL
16
6
0
10 May 2019
Exploring the Hyperparameter Landscape of Adversarial Robustness
Evelyn Duesterwald
Anupama Murthi
Ganesh Venkataraman
M. Sinn
Deepak Vijaykeerthy
AAML
16
7
0
09 May 2019
Knowing The What But Not The Where in Bayesian Optimization
Vu Nguyen
Michael A. Osborne
31
37
0
07 May 2019
Learning Optimal Data Augmentation Policies via Bayesian Optimization for Image Classification Tasks
Chunxu Zhang
Jiaxu Cui
Bo Yang
29
3
0
06 May 2019
Fast and Reliable Architecture Selection for Convolutional Neural Networks
Lukas Hahn
L. Roese-Koerner
Klaus Friedrichs
A. Kummert
17
0
0
06 May 2019
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
23
1
0
04 May 2019
A Survey on Neural Architecture Search
Martin Wistuba
Ambrish Rawat
Tejaswini Pedapati
AI4CE
19
258
0
04 May 2019
Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
24
40
0
03 May 2019
An ADMM Based Framework for AutoML Pipeline Configuration
Sijia Liu
Parikshit Ram
Deepak Vijaykeerthy
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Dakuo Wang
A. Conn
Alexander G. Gray
29
75
0
01 May 2019
AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations
Xiao Zhang
Rui Zhao
Yu Qiao
Xiaogang Wang
Hongsheng Li
CVBM
32
214
0
01 May 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
A Novel Orthogonal Direction Mesh Adaptive Direct Search Approach for SVM Hyperparameter Tuning
Alexandre Reeberg de Mello
Jonathan de Matos
M. Stemmer
A. Britto
Alessandro Lameiras Koerich
17
5
0
26 Apr 2019
Bayesian Search for Robust Optima
Nicholas D. Sanders
Richard Everson
J. Fieldsend
Alma A. M. Rahat
25
3
0
25 Apr 2019
Forecasting in Big Data Environments: an Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)
Ali Habibnia
E. Maasoumi
21
6
0
25 Apr 2019
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
Chinmay Hegde
27
11
0
24 Apr 2019
Linear Multiple Low-Rank Kernel Based Stationary Gaussian Processes Regression for Time Series
Feng Yin
Lishuo Pan
Xinwei He
Tianshi Chen
Sergios Theodoridis
Zhi-Quan
Zhi-Quan Luo
AI4TS
27
25
0
21 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
40
128
0
17 Apr 2019
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
29
27
0
17 Apr 2019
On the Performance of Differential Evolution for Hyperparameter Tuning
Mischa Schmidt
Shahd Safarani
J. Gastinger
Tobias Jacobs
S. Nicolas
A. Schulke
17
19
0
15 Apr 2019
Shakeout: A New Approach to Regularized Deep Neural Network Training
Guoliang Kang
Jun Yu Li
Dacheng Tao
28
59
0
13 Apr 2019
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
24
23
0
10 Apr 2019
Data adaptation in HANDY economy-ideology model
Marcin Sendera
17
3
0
08 Apr 2019
AutoSeM: Automatic Task Selection and Mixing in Multi-Task Learning
Han Guo
Ramakanth Pasunuru
Joey Tianyi Zhou
25
47
0
08 Apr 2019
Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization
Michael Volpp
Lukas P. Frohlich
Kirsten Fischer
Andreas Doerr
Stefan Falkner
Frank Hutter
Christian Daniel
26
84
0
04 Apr 2019
Adaptive Bayesian Linear Regression for Automated Machine Learning
Weilin Zhou
F. Precioso
20
5
0
01 Apr 2019
An analysis of the cost of hyper-parameter selection via split-sample validation, with applications to penalized regression
Jean Feng
N. Simon
19
1
0
28 Mar 2019
Meta-Learning surrogate models for sequential decision making
Alexandre Galashov
Jonathan Richard Schwarz
Hyunjik Kim
M. Garnelo
D. Saxton
Pushmeet Kohli
S. M. Ali Eslami
Yee Whye Teh
BDL
OffRL
30
26
0
28 Mar 2019
Deep Demosaicing for Edge Implementation
R. Ramakrishnan
Shangling Jui
V. Nia
38
5
0
26 Mar 2019
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
Linnan Wang
Yiyang Zhao
Yuu Jinnai
Yuandong Tian
Rodrigo Fonseca
BDL
25
95
0
26 Mar 2019
Sampling Acquisition Functions for Batch Bayesian Optimization
Alessandro De Palma
Celestine Mendler-Dünner
Thomas Parnell
Andreea Anghel
H. Pozidis
39
13
0
22 Mar 2019
Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Nimish Awalgaonkar
Ilias Bilionis
Xiaoqi Liu
P. Karava
Athanasios Tzempelikos
AI4TS
AI4CE
38
2
0
21 Mar 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
24
226
0
19 Mar 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
34
174
0
15 Mar 2019
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
GP
8
0
0
13 Mar 2019
DeepOBS: A Deep Learning Optimizer Benchmark Suite
Frank Schneider
Lukas Balles
Philipp Hennig
ODL
41
71
0
13 Mar 2019
Variational Bayesian Optimal Experimental Design
Adam Foster
M. Jankowiak
Eli Bingham
Paul Horsfall
Yee Whye Teh
Tom Rainforth
Noah D. Goodman
44
133
0
13 Mar 2019
Continual Learning in Practice
Tom Diethe
Tom Borchert
Eno Thereska
Borja Balle
Neil D. Lawrence
CLL
14
75
0
12 Mar 2019
Exploiting Reuse in Pipeline-Aware Hyperparameter Tuning
Liam Li
Evan R. Sparks
Kevin G. Jamieson
Ameet Talwalkar
13
9
0
12 Mar 2019
Efficient Optimization of Echo State Networks for Time Series Datasets
Jacob Reinier Maat
N. Gianniotis
P. Protopapas
AI4TS
11
20
0
12 Mar 2019
Financial Applications of Gaussian Processes and Bayesian Optimization
Joan Gonzalvez
Edmond Lezmi
T. Roncalli
Jiali Xu
20
54
0
12 Mar 2019
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
Jian Wu
Saul Toscano-Palmerin
P. Frazier
A. Wilson
25
130
0
12 Mar 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Real-Time Boiler Control Optimization with Machine Learning
Yukun Ding
Yiyu Shi
AI4CE
38
1
0
07 Mar 2019
Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference
Kelvin Hsu
F. Ramos
30
12
0
03 Mar 2019
High-dimensional Bayesian optimization using low-dimensional feature spaces
Riccardo Moriconi
M. Deisenroth
K. S. S. Kumar
14
11
0
27 Feb 2019
Previous
1
2
3
...
32
33
34
...
43
44
45
Next