19
0

Fast and Reliable Architecture Selection for Convolutional Neural Networks

Abstract

The performance of a Convolutional Neural Network (CNN) depends on its hyperparameters, like the number of layers, kernel sizes, or the learning rate for example. Especially in smaller networks and applications with limited computational resources, optimisation is key. We present a fast and efficient approach for CNN architecture selection. Taking into account time consumption, precision and robustness, we develop a heuristic to quickly and reliably assess a network's performance. In combination with Bayesian optimisation (BO), to effectively cover the vast parameter space, our contribution offers a plain and powerful architecture search for this machine learning technique.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.