ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1204.6078
  4. Cited By
Distributed GraphLab: A Framework for Machine Learning in the Cloud

Distributed GraphLab: A Framework for Machine Learning in the Cloud

26 April 2012
Yucheng Low
Joseph E. Gonzalez
Aapo Kyrola
Danny Bickson
Carlos Guestrin
J. M. Hellerstein
    GNNFedML
ArXiv (abs)PDFHTML

Papers citing "Distributed GraphLab: A Framework for Machine Learning in the Cloud"

32 / 82 papers shown
Title
Machine Learning and Cloud Computing: Survey of Distributed and SaaS
  Solutions
Machine Learning and Cloud Computing: Survey of Distributed and SaaS Solutions
Daniel Pop
38
63
0
29 Mar 2016
Faster and Cheaper: Parallelizing Large-Scale Matrix Factorization on
  GPUs
Faster and Cheaper: Parallelizing Large-Scale Matrix Factorization on GPUs
Wei Tan
Liangliang Cao
L. Fong
64
56
0
11 Mar 2016
Canary: A Scheduling Architecture for High Performance Cloud Computing
Hang Qu
Omid Mashayekhi
David Terei
P. Levis
64
23
0
03 Feb 2016
Strategies and Principles of Distributed Machine Learning on Big Data
Strategies and Principles of Distributed Machine Learning on Big Data
Eric Xing
Qirong Ho
P. Xie
Wei-Ming Dai
AI4CE
70
155
0
31 Dec 2015
BayesDB: A probabilistic programming system for querying the probable
  implications of data
BayesDB: A probabilistic programming system for querying the probable implications of data
Vikash K. Mansinghka
R. Tibbetts
Jay Baxter
Pat Shafto
Baxter S. Eaves
62
38
0
15 Dec 2015
Speeding Up Distributed Machine Learning Using Codes
Speeding Up Distributed Machine Learning Using Codes
Kangwook Lee
Maximilian Lam
Ramtin Pedarsani
Dimitris Papailiopoulos
Kannan Ramchandran
221
860
0
08 Dec 2015
A Framework for Computing on Large Dynamic Graphs
A Framework for Computing on Large Dynamic Graphs
Zhaoyu Dong
19
0
0
05 Dec 2015
Incremental Query Processing on Big Data Streams
Incremental Query Processing on Big Data Streams
L. Fegaras
43
33
0
24 Nov 2015
Elastic Resource Allocation for Distributed Graph Processing Platforms
Elastic Resource Allocation for Distributed Graph Processing Platforms
Ravikant Dindokar
Yogesh L. Simmhan
20
6
0
12 Oct 2015
Distributed Parameter Map-Reduce
Distributed Parameter Map-Reduce
Qi Li
42
0
0
03 Oct 2015
Thinking Like a Vertex: a Survey of Vertex-Centric Frameworks for
  Distributed Graph Processing
Thinking Like a Vertex: a Survey of Vertex-Centric Frameworks for Distributed Graph Processing
Ryan McCune
Tim Weninger
G. Madey
56
165
0
15 Jul 2015
Lightweight Asynchronous Snapshots for Distributed Dataflows
Lightweight Asynchronous Snapshots for Distributed Dataflows
Paris Carbone
Gyula Fóra
Stephan Ewen
Seif Haridi
K. Tzoumas
72
104
0
29 Jun 2015
Distributed Training of Structured SVM
Distributed Training of Structured SVM
Ching-pei Lee
Kai-Wei Chang
Shyam Upadhyay
Dan Roth
66
8
0
08 Jun 2015
Graph Partitioning via Parallel Submodular Approximation to Accelerate
  Distributed Machine Learning
Graph Partitioning via Parallel Submodular Approximation to Accelerate Distributed Machine Learning
Mu Li
D. Andersen
Alex Smola
FedML
27
15
0
18 May 2015
Effective Techniques for Message Reduction and Load Balancing in
  Distributed Graph Computation
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation
Da Yan
James Cheng
Yi Lu
Wilfred Ng
68
118
0
02 Mar 2015
Model-Parallel Inference for Big Topic Models
Model-Parallel Inference for Big Topic Models
Xun Zheng
Jin Kyu Kim
Qirong Ho
Eric Xing
MoEAI4CE
87
7
0
10 Nov 2014
Factorbird - a Parameter Server Approach to Distributed Matrix
  Factorization
Factorbird - a Parameter Server Approach to Distributed Matrix Factorization
Sebastian Schelter
Venu Satuluri
R. Zadeh
63
36
0
03 Nov 2014
FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs
FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs
Da Zheng
Disa Mhembere
Randal C. Burns
Joshua T. Vogelstein
Carey E. Priebe
A. Szalay
99
241
0
03 Aug 2014
Primitives for Dynamic Big Model Parallelism
Primitives for Dynamic Big Model Parallelism
Seunghak Lee
Jin Kyu Kim
Xun Zheng
Qirong Ho
Garth A. Gibson
Eric Xing
77
13
0
18 Jun 2014
Active Semi-Supervised Learning Using Sampling Theory for Graph Signals
Active Semi-Supervised Learning Using Sampling Theory for Graph Signals
Akshay Gadde
Aamir Anis
Antonio Ortega
73
157
0
16 May 2014
Spinner: Scalable Graph Partitioning in the Cloud
Spinner: Scalable Graph Partitioning in the Cloud
Claudio Martella
Dionysios Logothetis
Andreas Loukas
Georgos Siganos
81
77
0
15 Apr 2014
DimmWitted: A Study of Main-Memory Statistical Analytics
DimmWitted: A Study of Main-Memory Statistical Analytics
Ce Zhang
Christopher Ré
173
146
0
28 Mar 2014
NetworKit: A Tool Suite for Large-scale Complex Network Analysis
NetworKit: A Tool Suite for Large-scale Complex Network Analysis
Christian Staudt
A. Sazonovs
Henning Meyerhenke
90
83
0
12 Mar 2014
Consistent Bounded-Asynchronous Parameter Servers for Distributed ML
Consistent Bounded-Asynchronous Parameter Servers for Distributed ML
Jinliang Wei
Wei-Ming Dai
Abhimanu Kumar
Xun Zheng
Qirong Ho
Eric Xing
44
13
0
30 Dec 2013
Petuum: A New Platform for Distributed Machine Learning on Big Data
Petuum: A New Platform for Distributed Machine Learning on Big Data
Eric P. Xing
Qirong Ho
Wei-Ming Dai
Jin Kyu Kim
Jinliang Wei
Seunghak Lee
Xun Zheng
Junming Yin
Abhimanu Kumar
Eric Xing
109
35
0
30 Dec 2013
NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous
  and Decentralized matrix completion
NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion
Hyokun Yun
Hsiang-Fu Yu
Cho-Jui Hsieh
S.V.N. Vishwanathan
Inderjit Dhillon
111
124
0
01 Dec 2013
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics
Yogesh L. Simmhan
A. Kumbhare
Charith Wickramaarachchi
Soonil Nagarkar
S. Ravi
C. Raghavendra
Viktor Prasanna
GNN
79
111
0
23 Nov 2013
Blazes: Coordination Analysis for Distributed Programs
Blazes: Coordination Analysis for Distributed Programs
P. Alvaro
Neil Conway
J. M. Hellerstein
D. Maier
61
47
0
12 Sep 2013
Optimistic Concurrency Control for Distributed Unsupervised Learning
Optimistic Concurrency Control for Distributed Unsupervised Learning
Xinghao Pan
Joseph E. Gonzalez
Stefanie Jegelka
Tamara Broderick
Michael I. Jordan
74
35
0
30 Jul 2013
Rethinking Abstractions for Big Data: Why, Where, How, and What
Rethinking Abstractions for Big Data: Why, Where, How, and What
Mary W. Hall
Robert M. Kirby
Feifei Li
Miriah D. Meyer
Valerio Pascucci
J. M. Phillips
R. Ricci
J. Merwe
Suresh Venkatasubramanian
AI4CE
35
9
0
14 Jun 2013
Accelerated Mini-Batch Stochastic Dual Coordinate Ascent
Accelerated Mini-Batch Stochastic Dual Coordinate Ascent
Shai Shalev-Shwartz
Tong Zhang
ODL
131
151
0
12 May 2013
Mining Representative Unsubstituted Graph Patterns Using Prior
  Similarity Matrix
Mining Representative Unsubstituted Graph Patterns Using Prior Similarity Matrix
Wajdi Dhifli
Sabeur Aridhi
E. M. Nguifo
62
25
0
08 Mar 2013
Previous
12