ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.04636
27
15

Graph Partitioning via Parallel Submodular Approximation to Accelerate Distributed Machine Learning

18 May 2015
Mu Li
D. Andersen
Alex Smola
    FedML
ArXiv (abs)PDFHTML
Abstract

Distributed computing excels at processing large scale data, but the communication cost for synchronizing the shared parameters may slow down the overall performance. Fortunately, the interactions between parameter and data in many problems are sparse, which admits efficient partition in order to reduce the communication overhead. In this paper, we formulate data placement as a graph partitioning problem. We propose a distributed partitioning algorithm. We give both theoretical guarantees and a highly efficient implementation. We also provide a highly efficient implementation of the algorithm and demonstrate its promising results on both text datasets and social networks. We show that the proposed algorithm leads to 1.6x speedup of a state-of-the-start distributed machine learning system by eliminating 90\% of the network communication.

View on arXiv
Comments on this paper