ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1204.6078
  4. Cited By
Distributed GraphLab: A Framework for Machine Learning in the Cloud

Distributed GraphLab: A Framework for Machine Learning in the Cloud

26 April 2012
Yucheng Low
Joseph E. Gonzalez
Aapo Kyrola
Danny Bickson
Carlos Guestrin
J. M. Hellerstein
    GNN
    FedML
ArXivPDFHTML

Papers citing "Distributed GraphLab: A Framework for Machine Learning in the Cloud"

38 / 38 papers shown
Title
Play like a Vertex: A Stackelberg Game Approach for Streaming Graph
  Partitioning
Play like a Vertex: A Stackelberg Game Approach for Streaming Graph Partitioning
Zezhong Ding
Yongan Xiang
Shangyou Wang
Xike Xie
S. K. Zhou
29
3
0
28 Feb 2024
Distributed Graph Neural Network Training: A Survey
Distributed Graph Neural Network Training: A Survey
Yingxia Shao
Hongzheng Li
Xizhi Gu
Hongbo Yin
Yawen Li
Xupeng Miao
Wentao Zhang
Bin Cui
Lei Chen
GNN
AI4CE
11
56
0
01 Nov 2022
Out-of-Core Edge Partitioning at Linear Run-Time
Out-of-Core Edge Partitioning at Linear Run-Time
R. Mayer
Kamil Orujzade
Hans-Arno Jacobsen
19
19
0
23 Mar 2022
Kudu: An Efficient and Scalable Distributed Graph Pattern Mining Engine
Kudu: An Efficient and Scalable Distributed Graph Pattern Mining Engine
Jingji Chen
Xuehai Qian
11
6
0
08 May 2021
Hybrid Edge Partitioner: Partitioning Large Power-Law Graphs under
  Memory Constraints
Hybrid Edge Partitioner: Partitioning Large Power-Law Graphs under Memory Constraints
R. Mayer
Hans-Arno Jacobsen
21
30
0
23 Mar 2021
A Survey on Large-scale Machine Learning
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
19
109
0
10 Aug 2020
Pipelined Training with Stale Weights of Deep Convolutional Neural
  Networks
Pipelined Training with Stale Weights of Deep Convolutional Neural Networks
Lifu Zhang
T. Abdelrahman
21
0
0
29 Dec 2019
Multi-Dimensional Balanced Graph Partitioning via Projected Gradient
  Descent
Multi-Dimensional Balanced Graph Partitioning via Projected Gradient Descent
Dmitrii Avdiukhin
S. Pupyrev
G. Yaroslavtsev
12
18
0
10 Feb 2019
Fault Tolerance in Iterative-Convergent Machine Learning
Fault Tolerance in Iterative-Convergent Machine Learning
Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric P. Xing
26
41
0
17 Oct 2018
GPOP: A cache- and work-efficient framework for Graph Processing Over
  Partitions
GPOP: A cache- and work-efficient framework for Graph Processing Over Partitions
Kartik Lakhotia
Sourav Pati
Rajgopal Kannan
Viktor Prasanna
23
17
0
21 Jun 2018
Experimental Analysis of Distributed Graph Systems
Experimental Analysis of Distributed Graph Systems
Khaled Ammar
M. Tamer Özsu
20
34
0
21 Jun 2018
Start Late or Finish Early: A Distributed Graph Processing System with
  Redundancy Reduction
Start Late or Finish Early: A Distributed Graph Processing System with Redundancy Reduction
Shuang Song
Xu Liu
Qinzhe Wu
A. Gerstlauer
Tao Li
L. John
GNN
11
22
0
31 May 2018
Probabilistic Synchronous Parallel
Probabilistic Synchronous Parallel
Liang Wang
Ben Catterall
Richard Mortier
24
16
0
22 Sep 2017
A Comprehensive Survey of Graph Embedding: Problems, Techniques and
  Applications
A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications
Hongyun Cai
V. Zheng
Kevin Chen-Chuan Chang
AI4TS
44
1,781
0
22 Sep 2017
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
33
127
0
11 Sep 2017
GraphR: Accelerating Graph Processing Using ReRAM
GraphR: Accelerating Graph Processing Using ReRAM
Linghao Song
Youwei Zhuo
Xuehai Qian
Hai Helen Li
Yiran Chen
GNN
22
245
0
21 Aug 2017
Distributed Statistical Machine Learning in Adversarial Settings:
  Byzantine Gradient Descent
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent
Yudong Chen
Lili Su
Jiaming Xu
FedML
13
241
0
16 May 2017
An Experimental Survey on Big Data Frameworks
An Experimental Survey on Big Data Frameworks
Wissem Inoubli
Sabeur Aridhi
Haithem Mezni
Mondher Maddouri
E. M. Nguifo
20
113
0
31 Oct 2016
MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative
  Matrix Factorization
MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization
R. Kannan
Grey Ballard
Haesun Park
30
40
0
28 Sep 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
19
150
0
24 Aug 2016
Thrill: High-Performance Algorithmic Distributed Batch Data Processing
  with C++
Thrill: High-Performance Algorithmic Distributed Batch Data Processing with C++
Timo Bingmann
Michael Axtmann
E. Jöbstl
S. Lamm
Huyen Chau Nguyen
Alexander Noe
Sebastian Schlag
Matthias Stumpp
Tobias Sturm
Peter Sanders
VLM
11
52
0
19 Aug 2016
High-Level Programming Abstractions for Distributed Graph Processing
High-Level Programming Abstractions for Distributed Graph Processing
Vasiliki Kalavri
Vladimir Vlassov
Seif Haridi
GNN
16
69
0
09 Jul 2016
Towards Geo-Distributed Machine Learning
Towards Geo-Distributed Machine Learning
Ignacio Cano
Markus Weimer
D. Mahajan
Carlo Curino
Giovanni Matteo Fumarola
19
56
0
30 Mar 2016
Machine Learning and Cloud Computing: Survey of Distributed and SaaS
  Solutions
Machine Learning and Cloud Computing: Survey of Distributed and SaaS Solutions
Daniel Pop
9
63
0
29 Mar 2016
Faster and Cheaper: Parallelizing Large-Scale Matrix Factorization on
  GPUs
Faster and Cheaper: Parallelizing Large-Scale Matrix Factorization on GPUs
Wei Tan
Liangliang Cao
L. Fong
23
56
0
11 Mar 2016
Strategies and Principles of Distributed Machine Learning on Big Data
Strategies and Principles of Distributed Machine Learning on Big Data
Eric P. Xing
Qirong Ho
P. Xie
Wei-Ming Dai
AI4CE
24
153
0
31 Dec 2015
BayesDB: A probabilistic programming system for querying the probable
  implications of data
BayesDB: A probabilistic programming system for querying the probable implications of data
Vikash K. Mansinghka
R. Tibbetts
Jay Baxter
Pat Shafto
Baxter S. Eaves
11
38
0
15 Dec 2015
Speeding Up Distributed Machine Learning Using Codes
Speeding Up Distributed Machine Learning Using Codes
Kangwook Lee
Maximilian Lam
Ramtin Pedarsani
Dimitris Papailiopoulos
Kannan Ramchandran
31
853
0
08 Dec 2015
Incremental Query Processing on Big Data Streams
Incremental Query Processing on Big Data Streams
L. Fegaras
14
33
0
24 Nov 2015
Lightweight Asynchronous Snapshots for Distributed Dataflows
Lightweight Asynchronous Snapshots for Distributed Dataflows
Paris Carbone
Gyula Fóra
Stephan Ewen
Seif Haridi
K. Tzoumas
35
104
0
29 Jun 2015
Big Data Analytics in Bioinformatics: A Machine Learning Perspective
Big Data Analytics in Bioinformatics: A Machine Learning Perspective
H. Kashyap
H. A. Ahmed
N. Hoque
Swarup Roy
D. Bhattacharyya
AI4CE
16
91
0
15 Jun 2015
Distributed Training of Structured SVM
Distributed Training of Structured SVM
Ching-pei Lee
Kai-Wei Chang
Shyam Upadhyay
Dan Roth
15
8
0
08 Jun 2015
Effective Techniques for Message Reduction and Load Balancing in
  Distributed Graph Computation
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation
Da Yan
James Cheng
Yi Lu
Wilfred Ng
33
117
0
02 Mar 2015
Model-Parallel Inference for Big Topic Models
Model-Parallel Inference for Big Topic Models
Xun Zheng
Jin Kyu Kim
Qirong Ho
Eric P. Xing
MoE
AI4CE
36
7
0
10 Nov 2014
Factorbird - a Parameter Server Approach to Distributed Matrix
  Factorization
Factorbird - a Parameter Server Approach to Distributed Matrix Factorization
Sebastian Schelter
Venu Satuluri
R. Zadeh
24
36
0
03 Nov 2014
FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs
FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs
Da Zheng
Disa Mhembere
Randal C. Burns
Joshua T. Vogelstein
Carey E. Priebe
A. Szalay
24
236
0
03 Aug 2014
NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous
  and Decentralized matrix completion
NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion
Hyokun Yun
Hsiang-Fu Yu
Cho-Jui Hsieh
S.V.N. Vishwanathan
Inderjit Dhillon
44
124
0
01 Dec 2013
Accelerated Mini-Batch Stochastic Dual Coordinate Ascent
Accelerated Mini-Batch Stochastic Dual Coordinate Ascent
Shai Shalev-Shwartz
Tong Zhang
ODL
47
150
0
12 May 2013
1