ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1106.6280
  4. Cited By
On optimality of kernels for approximate Bayesian computation using
  sequential Monte Carlo

On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo

30 June 2011
Sarah Filippi
Chris P. Barnes
Julien Cornebise
M. Stumpf
ArXivPDFHTML

Papers citing "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo"

29 / 29 papers shown
Title
Inference for the stochastic FitzHugh-Nagumo model from real action
  potential data via approximate Bayesian computation
Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation
Adeline Samson
M. Tamborrino
I. Tubikanec
37
2
0
28 May 2024
Sample-efficient neural likelihood-free Bayesian inference of implicit
  HMMs
Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs
Sanmitra Ghosh
Paul J. Birrell
Daniela De Angelis
56
1
0
02 May 2024
Stratified distance space improves the efficiency of sequential samplers
  for approximate Bayesian computation
Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation
Henri Pesonen
J. Corander
33
0
0
30 Dec 2023
Towards Data-Conditional Simulation for ABC Inference in Stochastic
  Differential Equations
Towards Data-Conditional Simulation for ABC Inference in Stochastic Differential Equations
P. Jovanovski
Andrew Golightly
Umberto Picchini
20
1
0
16 Oct 2023
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian
  Inference
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
Desi R. Ivanova
Daniel Habermann
Baixu Chen
Jie Jiang
Stefan T. Radev
FedML
35
5
0
06 Oct 2023
A Wall-time Minimizing Parallelization Strategy for Approximate Bayesian
  Computation
A Wall-time Minimizing Parallelization Strategy for Approximate Bayesian Computation
Emad Alamoudi
Felipe Reck
Nils Bundgaard
Frederik Graw
L. Brusch
Jan Hasenauer
Yannik Schälte
17
0
0
30 Apr 2023
Approximate Methods for Bayesian Computation
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
15
5
0
06 Oct 2022
Modeling Self-Propagating Malware with Epidemiological Models
Modeling Self-Propagating Malware with Epidemiological Models
Alesia Chernikova
N. Gozzi
Simona Boboila
N. Perra
Tina Eliassi-Rad
Alina Oprea
15
7
0
05 Aug 2022
Guided sequential ABC schemes for intractable Bayesian models
Guided sequential ABC schemes for intractable Bayesian models
Umberto Picchini
M. Tamborrino
61
8
0
24 Jun 2022
pyABC: Efficient and robust easy-to-use approximate Bayesian computation
pyABC: Efficient and robust easy-to-use approximate Bayesian computation
Yannik Schälte
Emmanuel Klinger
Emad Alamoudi
Jan Hasenauer
13
22
0
24 Mar 2022
Measuring the accuracy of likelihood-free inference
Measuring the accuracy of likelihood-free inference
Aden Forrow
R. Baker
13
2
0
15 Dec 2021
Model choice and parameter inference in controlled branching processes
Model choice and parameter inference in controlled branching processes
Miguel A. González
C. Minuesa
I. Puerto
16
1
0
08 Aug 2021
Increasing the efficiency of Sequential Monte Carlo samplers through the
  use of approximately optimal L-kernels
Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels
P. L. Green
Robert E. Moore
Ryan J Jackson
Jinglai Li
Simon Maskell
13
13
0
24 Apr 2020
Multifidelity Approximate Bayesian Computation with Sequential Monte
  Carlo Parameter Sampling
Multifidelity Approximate Bayesian Computation with Sequential Monte Carlo Parameter Sampling
Thomas P. Prescott
R. Baker
14
12
0
17 Jan 2020
Rapid Bayesian inference for expensive stochastic models
Rapid Bayesian inference for expensive stochastic models
D. Warne
R. Baker
Matthew J. Simpson
13
16
0
14 Sep 2019
Finding our Way in the Dark: Approximate MCMC for Approximate Bayesian
  Methods
Finding our Way in the Dark: Approximate MCMC for Approximate Bayesian Methods
Evgeny Levi
Radu V. Craiu
14
6
0
16 May 2019
Approximate Bayesian Computation via Population Monte Carlo and
  Classification
Approximate Bayesian Computation via Population Monte Carlo and Classification
C. Rogers-Smith
Henri Pesonen
Samuel Kaski
14
1
0
29 Oct 2018
Optimal proposals for Approximate Bayesian Computation
Optimal proposals for Approximate Bayesian Computation
Justin Alsing
Benjamin Dan Wandelt
S. Feeney
18
6
0
18 Aug 2018
ABC Samplers
ABC Samplers
Y. Fan
Scott A. Sisson
20
28
0
26 Feb 2018
Multilevel rejection sampling for approximate Bayesian computation
Multilevel rejection sampling for approximate Bayesian computation
D. Warne
R. Baker
Matthew J. Simpson
17
28
0
10 Feb 2017
Convergence of Regression Adjusted Approximate Bayesian Computation
Convergence of Regression Adjusted Approximate Bayesian Computation
Wentao Li
Paul Fearnhead
116
36
0
22 Sep 2016
Fast Approximate Bayesian Computation for Estimating Parameters in
  Differential Equations
Fast Approximate Bayesian Computation for Estimating Parameters in Differential Equations
Sanmitra Ghosh
S. Dasmahapatra
K. Maharatna
14
7
0
17 Jul 2015
Approximate Bayesian Computation for Forward Modeling in Cosmology
Approximate Bayesian Computation for Forward Modeling in Cosmology
Joel Akeret
Alexandre Réfrégier
A. Amara
Sebastian Seehars
C. Hasner
12
89
0
27 Apr 2015
Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian
  Computation
Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation
Fernando V. Bonassi
M. West
27
71
0
26 Mar 2015
Likelihood free inference for Markov processes: a comparison
Likelihood free inference for Markov processes: a comparison
J. Owen
D. Wilkinson
Colin S. Gillespie
29
33
0
02 Oct 2014
Scalable Inference for Markov Processes with Intractable Likelihoods
Scalable Inference for Markov Processes with Intractable Likelihoods
J. Owen
D. Wilkinson
Colin S. Gillespie
TPM
31
29
0
26 Mar 2014
Pre-processing for approximate Bayesian computation in image analysis
Pre-processing for approximate Bayesian computation in image analysis
M. Moores
Christopher C. Drovandi
Kerrie Mengersen
Christian P. Robert
63
40
0
18 Mar 2014
Optimizing Threshold - Schedules for Approximate Bayesian Computation
  Sequential Monte Carlo Samplers: Applications to Molecular Systems
Optimizing Threshold - Schedules for Approximate Bayesian Computation Sequential Monte Carlo Samplers: Applications to Molecular Systems
D. Silk
S. Filippi
M. Stumpf
113
11
0
11 Oct 2012
Adaptive approximate Bayesian computation for complex models
Adaptive approximate Bayesian computation for complex models
Maxime Lenormand
F. Jabot
G. Deffuant
TPM
54
151
0
05 Nov 2011
1