ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.03126
17
28

Multilevel rejection sampling for approximate Bayesian computation

10 February 2017
D. Warne
R. Baker
Matthew J. Simpson
ArXivPDFHTML
Abstract

Likelihood-free methods, such as approximate Bayesian computation, are powerful tools for practical inference problems with intractable likelihood functions. Markov chain Monte Carlo and sequential Monte Carlo variants of approximate Bayesian computation can be effective techniques for sampling posterior distributions in an approximate Bayesian computation setting. However, without careful consideration of convergence criteria and selection of proposal kernels, such methods can lead to very biased inference or computationally inefficient sampling. In contrast, rejection sampling for approximate Bayesian computation, despite being computationally intensive, results in independent, identically distributed samples from the approximated posterior. An alternative method is proposed for the acceleration of likelihood-free Bayesian inference that applies multilevel Monte Carlo variance reduction techniques directly to rejection sampling. The resulting method retains the accuracy advantages of rejection sampling while significantly improving the computational efficiency.

View on arXiv
Comments on this paper