ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1103.2692
  4. Cited By
Bayesian inverse problems with Gaussian priors

Bayesian inverse problems with Gaussian priors

14 March 2011
B. Knapik
A. van der Vaart
J. H. Zanten
ArXivPDFHTML

Papers citing "Bayesian inverse problems with Gaussian priors"

33 / 33 papers shown
Title
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
37
1
0
18 Oct 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
35
5
0
30 Jun 2024
A Bayesian approach with Gaussian priors to the inverse problem of
  source identification in elliptic PDEs
A Bayesian approach with Gaussian priors to the inverse problem of source identification in elliptic PDEs
Matteo Giordano
27
0
0
29 Feb 2024
Strong maximum a posteriori estimation in Banach spaces with Gaussian
  priors
Strong maximum a posteriori estimation in Banach spaces with Gaussian priors
Hefin Lambley
16
5
0
26 Apr 2023
Optimal Regularization for a Data Source
Optimal Regularization for a Data Source
Oscar Leong
Eliza O'Reilly
Yong Sheng Soh
V. Chandrasekaran
25
4
0
27 Dec 2022
Uncertainty quantification for sparse spectral variational
  approximations in Gaussian process regression
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
31
5
0
21 Dec 2022
Convergence Rates for Learning Linear Operators from Noisy Data
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
19
54
0
27 Aug 2021
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
20
31
0
22 May 2020
Posterior contraction rates for non-parametric state and drift
  estimation
Posterior contraction rates for non-parametric state and drift estimation
Sebastian Reich
P. Rozdeba
21
5
0
20 Mar 2020
Gaussian Processes with Errors in Variables: Theory and Computation
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
24
3
0
14 Oct 2019
Nonparametric statistical inference for drift vector fields of
  multi-dimensional diffusions
Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions
Richard Nickl
Kolyan Ray
20
50
0
03 Oct 2018
Convergence rates for Penalised Least Squares Estimators in
  PDE-constrained regression problems
Convergence rates for Penalised Least Squares Estimators in PDE-constrained regression problems
Richard Nickl
Sara van de Geer
Sven Wang
15
59
0
24 Sep 2018
Bayesian inverse problems with unknown operators
Bayesian inverse problems with unknown operators
Mathias Trabs
26
12
0
30 Jan 2018
Efficient Nonparametric Bayesian Inference For X-Ray Transforms
Efficient Nonparametric Bayesian Inference For X-Ray Transforms
F. Monard
Richard Nickl
G. Paternain
13
57
0
21 Aug 2017
Frequentist coverage and sup-norm convergence rate in Gaussian process
  regression
Frequentist coverage and sup-norm convergence rate in Gaussian process regression
Yun Yang
A. Bhattacharya
D. Pati
6
53
0
16 Aug 2017
On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear
  Bayesian Inverse Problems
On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear Bayesian Inverse Problems
Yulong Lu
21
16
0
01 Jun 2017
Frequentist Consistency of Variational Bayes
Frequentist Consistency of Variational Bayes
Yixin Wang
David M. Blei
BDL
28
204
0
09 May 2017
Adaptive nonparametric drift estimation for diffusion processes using
  Faber-Schauder expansions
Adaptive nonparametric drift estimation for diffusion processes using Faber-Schauder expansions
Frank van der Meulen
Moritz Schauer
J. van Waaij
16
11
0
15 Dec 2016
Multiscale scanning in inverse problems
Multiscale scanning in inverse problems
K. Proksch
Frank Werner
Axel Munk
26
31
0
14 Nov 2016
Asymptotic frequentist coverage properties of Bayesian credible sets for
  sieve priors
Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors
Judith Rousseau
Botond Szabó
24
22
0
16 Sep 2016
Large Noise in Variational Regularization
Large Noise in Variational Regularization
Martin Burger
T. Helin
Hanne Kekkonen
17
15
0
01 Feb 2016
Regularization and Bayesian Learning in Dynamical Systems: Past, Present
  and Future
Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future
A. Chiuso
38
56
0
04 Nov 2015
Posterior consistency and convergence rates for Bayesian inversion with
  hypoelliptic operators
Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators
Hanne Kekkonen
Matti Lassas
S. Siltanen
19
22
0
07 Jul 2015
Adaptive Bayesian credible sets in regression with a Gaussian process
  prior
Adaptive Bayesian credible sets in regression with a Gaussian process prior
S. Sniekers
A. van der Vaart
17
46
0
29 Apr 2015
Asymptotic behaviour of the empirical Bayes posteriors associated to
  maximum marginal likelihood estimator
Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator
Judith Rousseau
Botond Szabó
26
56
0
19 Apr 2015
Adaptive Bayesian estimation in indirect Gaussian sequence space models
Adaptive Bayesian estimation in indirect Gaussian sequence space models
Jan Johannes
Anna Simoni
R. Schenk
33
4
0
01 Feb 2015
Adaptive empirical Bayesian smoothing splines
Adaptive empirical Bayesian smoothing splines
Paulo Serra
Tatyana Krivobokova
18
21
0
25 Nov 2014
Gaussian Approximation of General Nonparametric Posterior Distributions
Gaussian Approximation of General Nonparametric Posterior Distributions
Zuofeng Shang
Guang Cheng
31
4
0
13 Nov 2014
A general approach to posterior contraction in nonparametric inverse
  problems
A general approach to posterior contraction in nonparametric inverse problems
B. Knapik
J. Salomond
MedIm
31
32
0
01 Jul 2014
Posterior concentration rates for empirical Bayes procedures, with
  applications to Dirichlet Process mixtures
Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures
S. Donnet
Vincent Rivoirard
Judith Rousseau
Catia Scricciolo
35
41
0
17 Jun 2014
Bayesian Compressed Regression
Bayesian Compressed Regression
Rajarshi Guhaniyogi
David B. Dunson
46
73
0
04 Mar 2013
Posterior Consistency for Bayesian Inverse Problems through Stability
  and Regression Results
Posterior Consistency for Bayesian Inverse Problems through Stability and Regression Results
Sebastian J. Vollmer
36
55
0
17 Feb 2013
Bayesian inverse problems with non-conjugate priors
Bayesian inverse problems with non-conjugate priors
Kolyan Ray
61
85
0
27 Sep 2012
1