ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.6860
18
21

Adaptive empirical Bayesian smoothing splines

25 November 2014
Paulo Serra
Tatyana Krivobokova
ArXivPDFHTML
Abstract

In this paper we develop and study adaptive empirical Bayesian smoothing splines. These are smoothing splines with both smoothing parameter and penalty order determined via the empirical Bayes method from the marginal likelihood of the model. The selected order and smoothing parameter are used to construct adaptive credible sets with good frequentist coverage for the underlying regression function. We use these credible sets as a proxy to show the superior performance of adaptive empirical Bayesian smoothing splines compared to frequentist smoothing splines.

View on arXiv
Comments on this paper