ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0912.3995
  4. Cited By
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design

Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design

21 December 2009
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
ArXivPDFHTML

Papers citing "Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design"

50 / 617 papers shown
Title
Quality-Diversity Optimization: a novel branch of stochastic
  optimization
Quality-Diversity Optimization: a novel branch of stochastic optimization
Konstantinos Chatzilygeroudis
Antoine Cully
Vassilis Vassiliades
Jean-Baptiste Mouret
65
91
0
08 Dec 2020
Distilled Thompson Sampling: Practical and Efficient Thompson Sampling
  via Imitation Learning
Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning
Hongseok Namkoong
Sam Daulton
E. Bakshy
OffRL
16
6
0
29 Nov 2020
Knowledge transfer across cell lines using Hybrid Gaussian Process
  models with entity embedding vectors
Knowledge transfer across cell lines using Hybrid Gaussian Process models with entity embedding vectors
Clemens Hutter
M. Stosch
M. N. C. Bournazou
A. Butté
10
30
0
27 Nov 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware
  Learning
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
30
18
0
25 Nov 2020
All You Need is a Good Functional Prior for Bayesian Deep Learning
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OOD
BDL
31
56
0
25 Nov 2020
Model-based Reinforcement Learning for Continuous Control with Posterior
  Sampling
Model-based Reinforcement Learning for Continuous Control with Posterior Sampling
Ying Fan
Yifei Ming
33
17
0
20 Nov 2020
The Impact of Data on the Stability of Learning-Based Control- Extended
  Version
The Impact of Data on the Stability of Learning-Based Control- Extended Version
Armin Lederer
A. Capone
Thomas Beckers
Jonas Umlauft
Sandra Hirche
14
10
0
20 Nov 2020
Value Function Approximations via Kernel Embeddings for No-Regret
  Reinforcement Learning
Value Function Approximations via Kernel Embeddings for No-Regret Reinforcement Learning
Sayak Ray Chowdhury
Rafael Oliveira
OffRL
33
3
0
16 Nov 2020
Reward Biased Maximum Likelihood Estimation for Reinforcement Learning
Reward Biased Maximum Likelihood Estimation for Reinforcement Learning
Akshay Mete
Rahul Singh
Xi Liu
P. R. Kumar
18
24
0
16 Nov 2020
Asymptotically Optimal Information-Directed Sampling
Asymptotically Optimal Information-Directed Sampling
Johannes Kirschner
Tor Lattimore
Claire Vernade
Csaba Szepesvári
25
33
0
11 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the
  Face of Large State Spaces
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
44
18
0
09 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Towards Fundamental Limits of Multi-armed Bandits with Random Walk
  Feedback
Towards Fundamental Limits of Multi-armed Bandits with Random Walk Feedback
Tianyu Wang
Lin F. Yang
Zizhuo Wang
11
0
0
03 Nov 2020
Learning in the Wild with Incremental Skeptical Gaussian Processes
Learning in the Wild with Incremental Skeptical Gaussian Processes
Andrea Bontempelli
Stefano Teso
Fausto Giunchiglia
Andrea Passerini
14
20
0
02 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational
  Objective
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank Wood
29
5
0
29 Oct 2020
Gaussian Processes Model-based Control of Underactuated Balance Robots
Gaussian Processes Model-based Control of Underactuated Balance Robots
Kuo Chen
J. Yi
Dezhen Song
18
19
0
29 Oct 2020
A Domain-Shrinking based Bayesian Optimization Algorithm with
  Order-Optimal Regret Performance
A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance
Sudeep Salgia
Sattar Vakili
Qing Zhao
48
33
0
27 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
89
111
0
20 Oct 2020
Double-Linear Thompson Sampling for Context-Attentive Bandits
Double-Linear Thompson Sampling for Context-Attentive Bandits
Djallel Bouneffouf
Raphael Feraud
Sohini Upadhyay
Y. Khazaeni
Irina Rish
18
3
0
15 Oct 2020
Local Differential Privacy for Bayesian Optimization
Local Differential Privacy for Bayesian Optimization
Xingyu Zhou
Jian Tan
22
24
0
13 Oct 2020
Control Barrier Functions for Unknown Nonlinear Systems using Gaussian
  Processes
Control Barrier Functions for Unknown Nonlinear Systems using Gaussian Processes
Pushpak Jagtap
George J. Pappas
Majid Zamani
13
85
0
12 Oct 2020
Multi-Objective Bayesian Optimisation and Joint Inversion for Active
  Sensor Fusion
Multi-Objective Bayesian Optimisation and Joint Inversion for Active Sensor Fusion
S. Haan
F. Ramos
Dietmar Muller
4
4
0
12 Oct 2020
Learned Hardware/Software Co-Design of Neural Accelerators
Learned Hardware/Software Co-Design of Neural Accelerators
Zhan Shi
Chirag Sakhuja
Milad Hashemi
Kevin Swersky
Calvin Lin
19
15
0
05 Oct 2020
Parameter Optimization using high-dimensional Bayesian Optimization
Parameter Optimization using high-dimensional Bayesian Optimization
David Yenicelik
33
2
0
05 Oct 2020
Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases
Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases
Chris Wendler
Andisheh Amrollahi
B. Seifert
Andreas Krause
Markus Püschel
30
9
0
01 Oct 2020
Mean-Variance Analysis in Bayesian Optimization under Uncertainty
Mean-Variance Analysis in Bayesian Optimization under Uncertainty
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
39
33
0
17 Sep 2020
Online learning-based trajectory tracking for underactuated vehicles
  with uncertain dynamics
Online learning-based trajectory tracking for underactuated vehicles with uncertain dynamics
Thomas Beckers
L. Colombo
Sandra Hirche
George J. Pappas
8
6
0
14 Sep 2020
Information-Theoretic Multi-Objective Bayesian Optimization with
  Continuous Approximations
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations
Syrine Belakaria
Aryan Deshwal
J. Doppa
36
7
0
12 Sep 2020
IEO: Intelligent Evolutionary Optimisation for Hyperparameter Tuning
IEO: Intelligent Evolutionary Optimisation for Hyperparameter Tuning
Yuxi Huan
Fan Wu
Michail Basios
Leslie Kanthan
Lingbo Li
Baowen Xu
VLM
19
4
0
10 Sep 2020
Contraction $\mathcal{L}_1$-Adaptive Control using Gaussian Processes
Contraction L1\mathcal{L}_1L1​-Adaptive Control using Gaussian Processes
Aditya Gahlawat
Arun Lakshmanan
Lin Song
Andrew Patterson
Zhuohuan Wu
N. Hovakimyan
Evangelos Theodorou
AI4CE
21
1
0
08 Sep 2020
Sequential Subspace Search for Functional Bayesian Optimization
  Incorporating Experimenter Intuition
Sequential Subspace Search for Functional Bayesian Optimization Incorporating Experimenter Intuition
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
14
3
0
08 Sep 2020
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
  Spaces
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces
Hung The Tran
Sunil R. Gupta
Santu Rana
Huong Ha
Svetha Venkatesh
37
6
0
05 Sep 2020
Max-value Entropy Search for Multi-Objective Bayesian Optimization with
  Constraints
Max-value Entropy Search for Multi-Objective Bayesian Optimization with Constraints
Syrine Belakaria
Aryan Deshwal
J. Doppa
35
131
0
01 Sep 2020
Safe Active Dynamics Learning and Control: A Sequential
  Exploration-Exploitation Framework
Safe Active Dynamics Learning and Control: A Sequential Exploration-Exploitation Framework
T. Lew
Apoorva Sharma
James Harrison
Andrew Bylard
Marco Pavone
28
44
0
26 Aug 2020
Uncertainty aware Search Framework for Multi-Objective Bayesian
  Optimization with Constraints
Uncertainty aware Search Framework for Multi-Objective Bayesian Optimization with Constraints
Syrine Belakaria
Aryan Deshwal
J. Doppa
18
6
0
16 Aug 2020
Kernel Methods for Cooperative Multi-Agent Contextual Bandits
Kernel Methods for Cooperative Multi-Agent Contextual Bandits
Abhimanyu Dubey
Alex Pentland
12
29
0
14 Aug 2020
Multi-Agent Safe Planning with Gaussian Processes
Multi-Agent Safe Planning with Gaussian Processes
Zheqing Zhu
Erdem Biyik
Dorsa Sadigh
8
19
0
10 Aug 2020
Deterministic error bounds for kernel-based learning techniques under
  bounded noise
Deterministic error bounds for kernel-based learning techniques under bounded noise
E. Maddalena
Paul Scharnhorst
Colin N. Jones
33
45
0
10 Aug 2020
Learning-Based Safety-Stability-Driven Control for Safety-Critical
  Systems under Model Uncertainties
Learning-Based Safety-Stability-Driven Control for Safety-Critical Systems under Model Uncertainties
Lei Zheng
Jiesen Pan
Ruicong Yang
Hui Cheng
Haifeng Hu
11
14
0
08 Aug 2020
IntelligentPooling: Practical Thompson Sampling for mHealth
IntelligentPooling: Practical Thompson Sampling for mHealth
Sabina Tomkins
Peng Liao
P. Klasnja
Susan Murphy
41
30
0
31 Jul 2020
Quantity vs. Quality: On Hyperparameter Optimization for Deep
  Reinforcement Learning
Quantity vs. Quality: On Hyperparameter Optimization for Deep Reinforcement Learning
L. Hertel
Pierre Baldi
D. Gillen
BDL
31
12
0
29 Jul 2020
A Partially Observable MDP Approach for Sequential Testing for
  Infectious Diseases such as COVID-19
A Partially Observable MDP Approach for Sequential Testing for Infectious Diseases such as COVID-19
Rahul Singh
Fang Liu
Ness B. Shroff
18
6
0
25 Jul 2020
AttentionNAS: Spatiotemporal Attention Cell Search for Video
  Classification
AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification
Xiaofang Wang
Xuehan Xiong
Maxim Neumann
A. Piergiovanni
Michael S. Ryoo
A. Angelova
Kris Kitani
Wei Hua
24
51
0
23 Jul 2020
Filtered Poisson Process Bandit on a Continuum
Filtered Poisson Process Bandit on a Continuum
James A. Grant
R. Szechtman
9
7
0
20 Jul 2020
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient
  Learning
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning
Alekh Agarwal
Mikael Henaff
Sham Kakade
Wen Sun
OffRL
24
109
0
16 Jul 2020
Forced-exploration free Strategies for Unimodal Bandits
Forced-exploration free Strategies for Unimodal Bandits
Hassan Saber
Pierre Ménard
Odalric-Ambrym Maillard
9
6
0
30 Jun 2020
MTAdam: Automatic Balancing of Multiple Training Loss Terms
MTAdam: Automatic Balancing of Multiple Training Loss Terms
Itzik Malkiel
Lior Wolf
ODL
22
22
0
25 Jun 2020
Bayesian Optimization with a Prior for the Optimum
Bayesian Optimization with a Prior for the Optimum
Artur L. F. Souza
Luigi Nardi
Leonardo B. Oliveira
K. Olukotun
Marius Lindauer
Frank Hutter
21
8
0
25 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian
  Optimisation
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
19
2
0
25 Jun 2020
Green Machine Learning via Augmented Gaussian Processes and
  Multi-Information Source Optimization
Green Machine Learning via Augmented Gaussian Processes and Multi-Information Source Optimization
Antonio Candelieri
R. Perego
Francesco Archetti
19
16
0
25 Jun 2020
Previous
123...678...111213
Next