Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0912.3995
Cited By
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
21 December 2009
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design"
50 / 617 papers shown
Title
Quality-Diversity Optimization: a novel branch of stochastic optimization
Konstantinos Chatzilygeroudis
Antoine Cully
Vassilis Vassiliades
Jean-Baptiste Mouret
65
91
0
08 Dec 2020
Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning
Hongseok Namkoong
Sam Daulton
E. Bakshy
OffRL
16
6
0
29 Nov 2020
Knowledge transfer across cell lines using Hybrid Gaussian Process models with entity embedding vectors
Clemens Hutter
M. Stosch
M. N. C. Bournazou
A. Butté
10
30
0
27 Nov 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
30
18
0
25 Nov 2020
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OOD
BDL
31
56
0
25 Nov 2020
Model-based Reinforcement Learning for Continuous Control with Posterior Sampling
Ying Fan
Yifei Ming
33
17
0
20 Nov 2020
The Impact of Data on the Stability of Learning-Based Control- Extended Version
Armin Lederer
A. Capone
Thomas Beckers
Jonas Umlauft
Sandra Hirche
14
10
0
20 Nov 2020
Value Function Approximations via Kernel Embeddings for No-Regret Reinforcement Learning
Sayak Ray Chowdhury
Rafael Oliveira
OffRL
33
3
0
16 Nov 2020
Reward Biased Maximum Likelihood Estimation for Reinforcement Learning
Akshay Mete
Rahul Singh
Xi Liu
P. R. Kumar
18
24
0
16 Nov 2020
Asymptotically Optimal Information-Directed Sampling
Johannes Kirschner
Tor Lattimore
Claire Vernade
Csaba Szepesvári
25
33
0
11 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
44
18
0
09 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Towards Fundamental Limits of Multi-armed Bandits with Random Walk Feedback
Tianyu Wang
Lin F. Yang
Zizhuo Wang
11
0
0
03 Nov 2020
Learning in the Wild with Incremental Skeptical Gaussian Processes
Andrea Bontempelli
Stefano Teso
Fausto Giunchiglia
Andrea Passerini
14
20
0
02 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank Wood
29
5
0
29 Oct 2020
Gaussian Processes Model-based Control of Underactuated Balance Robots
Kuo Chen
J. Yi
Dezhen Song
18
19
0
29 Oct 2020
A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance
Sudeep Salgia
Sattar Vakili
Qing Zhao
48
33
0
27 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
89
111
0
20 Oct 2020
Double-Linear Thompson Sampling for Context-Attentive Bandits
Djallel Bouneffouf
Raphael Feraud
Sohini Upadhyay
Y. Khazaeni
Irina Rish
18
3
0
15 Oct 2020
Local Differential Privacy for Bayesian Optimization
Xingyu Zhou
Jian Tan
22
24
0
13 Oct 2020
Control Barrier Functions for Unknown Nonlinear Systems using Gaussian Processes
Pushpak Jagtap
George J. Pappas
Majid Zamani
13
85
0
12 Oct 2020
Multi-Objective Bayesian Optimisation and Joint Inversion for Active Sensor Fusion
S. Haan
F. Ramos
Dietmar Muller
4
4
0
12 Oct 2020
Learned Hardware/Software Co-Design of Neural Accelerators
Zhan Shi
Chirag Sakhuja
Milad Hashemi
Kevin Swersky
Calvin Lin
19
15
0
05 Oct 2020
Parameter Optimization using high-dimensional Bayesian Optimization
David Yenicelik
33
2
0
05 Oct 2020
Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases
Chris Wendler
Andisheh Amrollahi
B. Seifert
Andreas Krause
Markus Püschel
30
9
0
01 Oct 2020
Mean-Variance Analysis in Bayesian Optimization under Uncertainty
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
39
33
0
17 Sep 2020
Online learning-based trajectory tracking for underactuated vehicles with uncertain dynamics
Thomas Beckers
L. Colombo
Sandra Hirche
George J. Pappas
8
6
0
14 Sep 2020
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations
Syrine Belakaria
Aryan Deshwal
J. Doppa
36
7
0
12 Sep 2020
IEO: Intelligent Evolutionary Optimisation for Hyperparameter Tuning
Yuxi Huan
Fan Wu
Michail Basios
Leslie Kanthan
Lingbo Li
Baowen Xu
VLM
19
4
0
10 Sep 2020
Contraction
L
1
\mathcal{L}_1
L
1
-Adaptive Control using Gaussian Processes
Aditya Gahlawat
Arun Lakshmanan
Lin Song
Andrew Patterson
Zhuohuan Wu
N. Hovakimyan
Evangelos Theodorou
AI4CE
21
1
0
08 Sep 2020
Sequential Subspace Search for Functional Bayesian Optimization Incorporating Experimenter Intuition
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
14
3
0
08 Sep 2020
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces
Hung The Tran
Sunil R. Gupta
Santu Rana
Huong Ha
Svetha Venkatesh
37
6
0
05 Sep 2020
Max-value Entropy Search for Multi-Objective Bayesian Optimization with Constraints
Syrine Belakaria
Aryan Deshwal
J. Doppa
35
131
0
01 Sep 2020
Safe Active Dynamics Learning and Control: A Sequential Exploration-Exploitation Framework
T. Lew
Apoorva Sharma
James Harrison
Andrew Bylard
Marco Pavone
28
44
0
26 Aug 2020
Uncertainty aware Search Framework for Multi-Objective Bayesian Optimization with Constraints
Syrine Belakaria
Aryan Deshwal
J. Doppa
18
6
0
16 Aug 2020
Kernel Methods for Cooperative Multi-Agent Contextual Bandits
Abhimanyu Dubey
Alex Pentland
12
29
0
14 Aug 2020
Multi-Agent Safe Planning with Gaussian Processes
Zheqing Zhu
Erdem Biyik
Dorsa Sadigh
8
19
0
10 Aug 2020
Deterministic error bounds for kernel-based learning techniques under bounded noise
E. Maddalena
Paul Scharnhorst
Colin N. Jones
33
45
0
10 Aug 2020
Learning-Based Safety-Stability-Driven Control for Safety-Critical Systems under Model Uncertainties
Lei Zheng
Jiesen Pan
Ruicong Yang
Hui Cheng
Haifeng Hu
11
14
0
08 Aug 2020
IntelligentPooling: Practical Thompson Sampling for mHealth
Sabina Tomkins
Peng Liao
P. Klasnja
Susan Murphy
41
30
0
31 Jul 2020
Quantity vs. Quality: On Hyperparameter Optimization for Deep Reinforcement Learning
L. Hertel
Pierre Baldi
D. Gillen
BDL
31
12
0
29 Jul 2020
A Partially Observable MDP Approach for Sequential Testing for Infectious Diseases such as COVID-19
Rahul Singh
Fang Liu
Ness B. Shroff
18
6
0
25 Jul 2020
AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification
Xiaofang Wang
Xuehan Xiong
Maxim Neumann
A. Piergiovanni
Michael S. Ryoo
A. Angelova
Kris Kitani
Wei Hua
24
51
0
23 Jul 2020
Filtered Poisson Process Bandit on a Continuum
James A. Grant
R. Szechtman
9
7
0
20 Jul 2020
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning
Alekh Agarwal
Mikael Henaff
Sham Kakade
Wen Sun
OffRL
24
109
0
16 Jul 2020
Forced-exploration free Strategies for Unimodal Bandits
Hassan Saber
Pierre Ménard
Odalric-Ambrym Maillard
9
6
0
30 Jun 2020
MTAdam: Automatic Balancing of Multiple Training Loss Terms
Itzik Malkiel
Lior Wolf
ODL
22
22
0
25 Jun 2020
Bayesian Optimization with a Prior for the Optimum
Artur L. F. Souza
Luigi Nardi
Leonardo B. Oliveira
K. Olukotun
Marius Lindauer
Frank Hutter
21
8
0
25 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
19
2
0
25 Jun 2020
Green Machine Learning via Augmented Gaussian Processes and Multi-Information Source Optimization
Antonio Candelieri
R. Perego
Francesco Archetti
19
16
0
25 Jun 2020
Previous
1
2
3
...
6
7
8
...
11
12
13
Next