ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.07029
11
6

Uncertainty aware Search Framework for Multi-Objective Bayesian Optimization with Constraints

16 August 2020
Syrine Belakaria
Aryan Deshwal
J. Doppa
ArXivPDFHTML
Abstract

We consider the problem of constrained multi-objective (MO) blackbox optimization using expensive function evaluations, where the goal is to approximate the true Pareto set of solutions satisfying a set of constraints while minimizing the number of function evaluations. We propose a novel framework named Uncertainty-aware Search framework for Multi-Objective Optimization with Constraints (USeMOC) to efficiently select the sequence of inputs for evaluation to solve this problem. The selection method of USeMOC consists of solving a cheap constrained MO optimization problem via surrogate models of the true functions to identify the most promising candidates and picking the best candidate based on a measure of uncertainty. We applied this framework to optimize the design of a multi-output switched-capacitor voltage regulator via expensive simulations. Our experimental results show that USeMOC is able to achieve more than 90 % reduction in the number of simulations needed to uncover optimized circuits.

View on arXiv
Comments on this paper