Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0912.3995
Cited By
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
21 December 2009
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design"
50 / 617 papers shown
Title
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
Gilhyun Ryou
Geoffrey Wang
S. Karaman
61
3
0
13 Mar 2024
Explaining Bayesian Optimization by Shapley Values Facilitates Human-AI Collaboration
Julian Rodemann
Federico Croppi
Philipp Arens
Yusuf Sale
J. Herbinger
B. Bischl
Eyke Hüllermeier
Thomas Augustin
Conor J. Walsh
Giuseppe Casalicchio
48
7
0
07 Mar 2024
Incremental Bayesian Learning for Fail-Operational Control in Autonomous Driving
Lei Zheng
Rui Yang
Zeng Peng
Wei Yan
Michael Yu Wang
Jun Ma
47
2
0
07 Mar 2024
Real-Time Adaptive Safety-Critical Control with Gaussian Processes in High-Order Uncertain Models
Yu Zhang
Long Wen
Xiangtong Yao
Zhenshan Bing
Linghuan Kong
Wei He
Alois Knoll
58
1
0
29 Feb 2024
Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties
V. ArunKumarA.
A. Shilton
Sunil R. Gupta
Santu Rana
S. Greenhill
Svetha Venkatesh
21
4
0
27 Feb 2024
Streaming Gaussian Dirichlet Random Fields for Spatial Predictions of High Dimensional Categorical Observations
J. E. S. Soucie
H. Sosik
Y. Girdhar
BDL
42
0
0
23 Feb 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
52
2
0
22 Feb 2024
Safe Guaranteed Exploration for Non-linear Systems
Manish Prajapat
Johannes Köhler
M. Turchetta
Andreas Krause
Melanie Zeilinger
24
3
0
09 Feb 2024
Safe Active Learning for Time-Series Modeling with Gaussian Processes
Christoph Zimmer
Mona Meister
D. Nguyen-Tuong
AI4TS
33
52
0
09 Feb 2024
Principled Preferential Bayesian Optimization
Wenjie Xu
Wenbin Wang
Yuning Jiang
B. Svetozarevic
Colin N. Jones
35
6
0
08 Feb 2024
Whom to Trust? Elective Learning for Distributed Gaussian Process Regression
Zewen Yang
X. Dai
Akshat Dubey
Sandra Hirche
Georges Hattab
23
10
0
05 Feb 2024
Poisson Process for Bayesian Optimization
Xiaoxing Wang
Jiaxing Li
Chao Xue
Wei Liu
Weifeng Liu
Xiaokang Yang
Junchi Yan
Dacheng Tao
37
1
0
05 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
41
17
0
03 Feb 2024
Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization
Jiao Liu
Abhishek Gupta
Yew-Soon Ong
36
0
0
22 Dec 2023
Stochastic Bayesian Optimization with Unknown Continuous Context Distribution via Kernel Density Estimation
Xiaobin Huang
Lei Song
Ke Xue
Chao Qian
44
3
0
16 Dec 2023
Automatic nonlinear MPC approximation with closed-loop guarantees
Abdullah Tokmak
Christian Fiedler
Melanie Zeilinger
Sebastian Trimpe
Johannes Köhler
26
4
0
15 Dec 2023
Gaussian Process-Based Learning Control of Underactuated Balance Robots with an External and Internal Convertible Modeling Structure
Feng Han
Jingang Yi
27
1
0
15 Dec 2023
Modeling and Predicting Epidemic Spread: A Gaussian Process Regression Approach
B. She
Lei Xin
Philip E. Paré
Matthew T. Hale
21
0
0
14 Dec 2023
BOgen: Generating Part-Level 3D Designs Based on User Intention Inference through Bayesian Optimization and Variational Autoencoder
Seung Won Lee
Jiin Choi
Kyung-Hoon Hyun
19
2
0
05 Dec 2023
Regret Optimality of GP-UCB
Wenjia Wang
Xiaowei Zhang
Lu Zou
37
0
0
03 Dec 2023
A General Framework for User-Guided Bayesian Optimization
Carl Hvarfner
Frank Hutter
Luigi Nardi
GP
52
12
0
24 Nov 2023
Safe Online Dynamics Learning with Initially Unknown Models and Infeasible Safety Certificates
A. Capone
Ryan K. Cosner
Aaron D. Ames
Sandra Hirche
6
2
0
03 Nov 2023
Guaranteed Coverage Prediction Intervals with Gaussian Process Regression
Harris Papadopoulos
37
11
0
24 Oct 2023
On Multi-Fidelity Impedance Tuning for Human-Robot Cooperative Manipulation
Ethan Lau
Vaibhav Srivastava
S. Bopardikar
12
0
0
09 Oct 2023
Multi-Agent Bayesian Optimization with Coupled Black-Box and Affine Constraints
Wenjie Xu
Yuning Jiang
B. Svetozarevic
Colin N. Jones
44
0
0
02 Oct 2023
Data-driven adaptive building thermal controller tuning with constraints: A primal-dual contextual Bayesian optimization approach
Wenjie Xu
B. Svetozarevic
L. D. Natale
P. Heer
Colin N. Jones
AI4CE
36
11
0
01 Oct 2023
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
James M. Sullivan
U. Seljak
34
0
0
01 Oct 2023
Gaussian Process-Enhanced, External and Internal Convertible (EIC) Form-Based Control of Underactuated Balance Robots
Feng Han
Jingang Yi
17
2
0
27 Sep 2023
Optimal Observation-Intervention Trade-Off in Optimisation Problems with Causal Structure
K. Hammar
Neil Dhir
CML
20
0
0
05 Sep 2023
Distributed multi-agent target search and tracking with Gaussian process and reinforcement learning
Jigang Kim
Dohyun Jang
H. J. Kim
26
6
0
29 Aug 2023
Robust Bayesian Satisficing
Artun Saday
Yacsar Cahit Yildirim
Cem Tekin
80
2
0
16 Aug 2023
Graph-Structured Kernel Design for Power Flow Learning using Gaussian Processes
Parikshit Pareek
Deepjyoti Deka
Sidhant Misra
29
0
0
15 Aug 2023
Certified Multi-Fidelity Zeroth-Order Optimization
Étienne de Montbrun
Sébastien Gerchinovitz
19
1
0
02 Aug 2023
Learning-based Control for PMSM Using Distributed Gaussian Processes with Optimal Aggregation Strategy
Zhenxiao Yin
X. Dai
Zewen Yang
Yang-Wu Shen
Georges Hattab
Haiying Zhao
33
10
0
26 Jul 2023
Differentially Flat Learning-based Model Predictive Control Using a Stability, State, and Input Constraining Safety Filter
Adam W. Hall
Melissa Greeff
Angela P. Schoellig
33
5
0
20 Jul 2023
Episodic Gaussian Process-Based Learning Control with Vanishing Tracking Errors
Armin Lederer
Jonas Umlauft
Sandra Hirche
52
0
0
10 Jul 2023
Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian Learning
Shengbo Wang
Ke Li
Yin Yang
Yuting Cao
Tingwen Huang
S. Wen
32
4
0
03 Jul 2023
Bayesian Optimization with Formal Safety Guarantees via Online Conformal Prediction
Yunchuan Zhang
Sangwoo Park
Osvaldo Simeone
22
9
0
30 Jun 2023
Achieving Diversity in Objective Space for Sample-efficient Search of Multiobjective Optimization Problems
E. Lee
Bolong Cheng
M. McCourt
19
0
0
23 Jun 2023
Safe Risk-averse Bayesian Optimization for Controller Tuning
Christopher Koenig
Miks Ozols
Anastasia Makarova
Efe C. Balta
Andreas Krause
Alisa Rupenyan
17
8
0
23 Jun 2023
Optimistic Active Exploration of Dynamical Systems
Bhavya Sukhija
Lenart Treven
Cansu Sancaktar
Sebastian Blaes
Stelian Coros
Andreas Krause
42
17
0
21 Jun 2023
Bayesian Optimization of Expensive Nested Grey-Box Functions
Wenjie Xu
Yuning Jiang
B. Svetozarevic
Colin N. Jones
33
1
0
08 Jun 2023
Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization
Anthony Bardou
Patrick Thiran
Thomas Begin
26
4
0
31 May 2023
Optimization for truss design using Bayesian optimization
Bhawani Sandeep
Surjeet Singh
Sumit Kumar
21
0
0
27 May 2023
Concurrent Constrained Optimization of Unknown Rewards for Multi-Robot Task Allocation
Sukriti Singh
Anusha Srikanthan
Vivek Mallampati
Harish Ravichandar
29
3
0
24 May 2023
Learning Relevant Contextual Variables Within Bayesian Optimization
Julien Martinelli
Ayush Bharti
A. Tiihonen
S. T. John
Louis Filstroff
Sabina J. Sloman
Patrick Rinke
Samuel Kaski
54
0
0
23 May 2023
Mastering the exploration-exploitation trade-off in Bayesian Optimization
Antonio Candelieri
39
1
0
15 May 2023
Can Learning Deteriorate Control? Analyzing Computational Delays in Gaussian Process-Based Event-Triggered Online Learning
X. Dai
Armin Lederer
Zewen Yang
Sandra Hirche
43
13
0
14 May 2023
Optimizing Hyperparameters with Conformal Quantile Regression
David Salinas
Jacek Golebiowski
Aaron Klein
Matthias Seeger
Cédric Archambeau
29
8
0
05 May 2023
Adaptation to Misspecified Kernel Regularity in Kernelised Bandits
Yusha Liu
Aarti Singh
32
1
0
26 Apr 2023
Previous
1
2
3
4
5
...
11
12
13
Next