ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.14607
  4. Cited By
Expressive Score-Based Priors for Distribution Matching with Geometry-Preserving Regularization

Expressive Score-Based Priors for Distribution Matching with Geometry-Preserving Regularization

17 June 2025
Ziyu Gong
Jim Lim
David I. Inouye
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Expressive Score-Based Priors for Distribution Matching with Geometry-Preserving Regularization"

15 / 15 papers shown
Title
Uncovering Challenges of Solving the Continuous Gromov-Wasserstein Problem
Uncovering Challenges of Solving the Continuous Gromov-Wasserstein Problem
Xavier Aramayo Carrasco
Maksim Nekrashevich
Petr Mokrov
Evgeny Burnaev
Alexander Korotin
OT
69
6
0
10 Mar 2023
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
67
684
0
10 Jun 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
967
29,731
0
26 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
344
6,551
0
26 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
283
7,454
0
06 Oct 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
608
4,893
0
23 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
207
1,711
0
05 Dec 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,954
0
12 Jul 2019
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
61
528
0
18 Oct 2018
A Large-Scale Study on Regularization and Normalization in GANs
A Large-Scale Study on Regularization and Normalization in GANs
Karol Kurach
Mario Lucic
Xiaohua Zhai
Marcin Michalski
Sylvain Gelly
AI4CE
91
156
0
12 Jul 2018
Invariant Representations without Adversarial Training
Invariant Representations without Adversarial Training
Daniel Moyer
Shuyang Gao
Rob Brekelmans
Greg Ver Steeg
Aram Galstyan
OOD
64
213
0
24 May 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
62
1,356
0
16 Feb 2018
Are GANs Created Equal? A Large-Scale Study
Are GANs Created Equal? A Large-Scale Study
Mario Lucic
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
EGVM
65
1,013
0
28 Nov 2017
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GANOOD
383
9,511
0
28 May 2015
Domain Generalization via Invariant Feature Representation
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
137
1,185
0
10 Jan 2013
1