ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.14436
  4. Cited By
MoORE: SVD-based Model MoE-ization for Conflict- and Oblivion-Resistant Multi-Task Adaptation

MoORE: SVD-based Model MoE-ization for Conflict- and Oblivion-Resistant Multi-Task Adaptation

17 June 2025
Shen Yuan
Yin Zheng
Taifeng Wang
Binbin Liu
Hongteng Xu
    MoMe
ArXiv (abs)PDFHTML

Papers citing "MoORE: SVD-based Model MoE-ization for Conflict- and Oblivion-Resistant Multi-Task Adaptation"

19 / 19 papers shown
Title
Drop-Upcycling: Training Sparse Mixture of Experts with Partial Re-initialization
Drop-Upcycling: Training Sparse Mixture of Experts with Partial Re-initialization
Taishi Nakamura
Takuya Akiba
Kazuki Fujii
Yusuke Oda
Rio Yokota
Jun Suzuki
MoMeMoE
120
2
0
26 Feb 2025
OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning
OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning
Jinyuan Feng
Zhiqiang Pu
Tianyi Hu
Dongmin Li
Xiaolin Ai
Huimu Wang
MoE
68
5
0
20 Jan 2025
MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning
MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning
Yaming Yang
Dilxat Muhtar
Yelong Shen
Yuefeng Zhan
Jianfeng Liu
...
Denvy Deng
Feng Sun
Qi Zhang
Weizhu Chen
Yunhai Tong
MoEMoMe
124
4
0
12 Oct 2024
Upcycling Large Language Models into Mixture of Experts
Upcycling Large Language Models into Mixture of Experts
Ethan He
Abhinav Khattar
R. Prenger
V. Korthikanti
Zijie Yan
Tong Liu
Shiqing Fan
Ashwath Aithal
Mohammad Shoeybi
Bryan Catanzaro
MoE
83
16
0
10 Oct 2024
EMR-Merging: Tuning-Free High-Performance Model Merging
EMR-Merging: Tuning-Free High-Performance Model Merging
Chenyu Huang
Peng Ye
Tao Chen
Tong He
Xiangyu Yue
Wanli Ouyang
MoMe
78
45
0
23 May 2024
MoELoRA: Contrastive Learning Guided Mixture of Experts on
  Parameter-Efficient Fine-Tuning for Large Language Models
MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models
Tongxu Luo
Jiahe Lei
Fangyu Lei
Weihao Liu
Shizhu He
Jun Zhao
Kang Liu
MoEALM
77
27
0
20 Feb 2024
Language Models are Super Mario: Absorbing Abilities from Homologous
  Models as a Free Lunch
Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch
Le Yu
Yu Bowen
Haiyang Yu
Fei Huang
Yongbin Li
MoMe
107
331
0
06 Nov 2023
When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task
  Medical Applications
When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications
Qidong Liu
Xian Wu
Xiangyu Zhao
Yuanshao Zhu
Derong Xu
Feng Tian
Yefeng Zheng
MoE
79
72
0
21 Oct 2023
Sparse Upcycling: Training Mixture-of-Experts from Dense Checkpoints
Sparse Upcycling: Training Mixture-of-Experts from Dense Checkpoints
Aran Komatsuzaki
J. Puigcerver
James Lee-Thorp
Carlos Riquelme Ruiz
Basil Mustafa
Joshua Ainslie
Yi Tay
Mostafa Dehghani
N. Houlsby
MoMeMoE
76
123
0
09 Dec 2022
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
Mirac Suzgun
Nathan Scales
Nathanael Scharli
Sebastian Gehrmann
Yi Tay
...
Aakanksha Chowdhery
Quoc V. Le
Ed H. Chi
Denny Zhou
Jason W. Wei
ALMELMLRMReLM
263
1,131
0
17 Oct 2022
Efficient Large Scale Language Modeling with Mixtures of Experts
Efficient Large Scale Language Modeling with Mixtures of Experts
Mikel Artetxe
Shruti Bhosale
Naman Goyal
Todor Mihaylov
Myle Ott
...
Jeff Wang
Luke Zettlemoyer
Mona T. Diab
Zornitsa Kozareva
Ves Stoyanov
MoE
194
198
0
20 Dec 2021
Program Synthesis with Large Language Models
Program Synthesis with Large Language Models
Jacob Austin
Augustus Odena
Maxwell Nye
Maarten Bosma
Henryk Michalewski
...
Ellen Jiang
Carrie J. Cai
Michael Terry
Quoc V. Le
Charles Sutton
ELMAIMatReCodALM
200
1,986
0
16 Aug 2021
Evaluating Large Language Models Trained on Code
Evaluating Large Language Models Trained on Code
Mark Chen
Jerry Tworek
Heewoo Jun
Qiming Yuan
Henrique Pondé
...
Bob McGrew
Dario Amodei
Sam McCandlish
Ilya Sutskever
Wojciech Zaremba
ELMALM
233
5,635
0
07 Jul 2021
Scaling Vision with Sparse Mixture of Experts
Scaling Vision with Sparse Mixture of Experts
C. Riquelme
J. Puigcerver
Basil Mustafa
Maxim Neumann
Rodolphe Jenatton
André Susano Pinto
Daniel Keysers
N. Houlsby
MoE
112
606
0
10 Jun 2021
Aligning AI With Shared Human Values
Aligning AI With Shared Human Values
Dan Hendrycks
Collin Burns
Steven Basart
Andrew Critch
Jingkai Li
Basel Alomair
Jacob Steinhardt
145
569
0
05 Aug 2020
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
Christopher Clark
Kenton Lee
Ming-Wei Chang
Tom Kwiatkowski
Michael Collins
Kristina Toutanova
230
1,549
0
24 May 2019
Characterizing and Avoiding Negative Transfer
Characterizing and Avoiding Negative Transfer
Zirui Wang
Zihang Dai
Barnabás Póczós
J. Carbonell
85
416
0
24 Nov 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
1.1K
7,182
0
20 Apr 2018
A Survey on Multi-Task Learning
A Survey on Multi-Task Learning
Yu Zhang
Qiang Yang
AIMat
605
2,235
0
25 Jul 2017
1