Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.21532
Cited By
EvidenceMoE: A Physics-Guided Mixture-of-Experts with Evidential Critics for Advancing Fluorescence Light Detection and Ranging in Scattering Media
23 May 2025
Ismail Erbas
Ferhat Demirkiran
Karthik Swaminathan
Naigang Wang
Navid Ibtehaj Nizam
Stefan T. Radev
Kaoutar El Maghraoui
Xavier Intes
Vikas Pandey
MoE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"EvidenceMoE: A Physics-Guided Mixture-of-Experts with Evidential Critics for Advancing Fluorescence Light Detection and Ranging in Scattering Media"
7 / 7 papers shown
Title
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Siyuan Mu
Sen Lin
MoE
428
5
0
10 Mar 2025
Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts
Xiaoming Shi
Shiyu Wang
Yuqi Nie
Dianqi Li
Zhou Ye
Qingsong Wen
Ming Jin
AI4TS
93
46
0
24 Sep 2024
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
79
627
0
14 Jul 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
222
1,410
0
21 Oct 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
159
1,691
0
06 Jun 2019
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
177
991
0
05 Jun 2018
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
352
4,704
0
15 Mar 2017
1