Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.19431
Cited By
Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
26 May 2025
Chenguang Wang
Xiaoyu Zhang
Kaiyuan Cui
Weichen Zhao
Yongtao Guan
Tianshu Yu
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage"
29 / 29 papers shown
Title
Training Neural Samplers with Reverse Diffusive KL Divergence
Wenlin Chen
Jiajun He
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
94
8
0
16 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
104
21
0
03 Oct 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
72
55
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
157
26
0
07 Feb 2024
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
69
46
0
04 Oct 2023
Nearly
d
d
d
-Linear Convergence Bounds for Diffusion Models via Stochastic Localization
Joe Benton
Valentin De Bortoli
Arnaud Doucet
George Deligiannidis
DiffM
83
114
0
07 Aug 2023
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Weijian Luo
Boya Zhang
Zhihua Zhang
65
12
0
08 Jun 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
74
29
0
26 Jan 2023
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
113
92
0
02 Nov 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
187
86
0
02 Oct 2022
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
97
91
0
03 Aug 2022
Elucidating the Design Space of Diffusion-Based Generative Models
Tero Karras
M. Aittala
Timo Aila
S. Laine
DiffM
186
1,981
0
01 Jun 2022
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
87
114
0
30 Nov 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
73
36
0
08 Jul 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
74
28
0
21 Jun 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
338
6,480
0
26 Nov 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
634
18,096
0
19 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
98
271
0
03 Jun 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
127
185
0
16 Feb 2020
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
61
89
0
12 Feb 2020
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
73
664
0
07 Nov 2019
Variational f-divergence Minimization
Mingtian Zhang
Thomas Bird
Raza Habib
Tianlin Xu
David Barber
FedML
40
28
0
27 Jul 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
258
3,916
0
12 Jul 2019
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
110
417
0
17 May 2019
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
51
218
0
26 Apr 2019
Neural Importance Sampling
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
70
364
0
11 Aug 2018
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
266
78
0
26 May 2016
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
127
12,231
0
19 Dec 2013
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
165
4,302
0
18 Nov 2011
1