Canonical Policy: Learning Canonical 3D Representation for Equivariant Policy

Visual Imitation learning has achieved remarkable progress in robotic manipulation, yet generalization to unseen objects, scene layouts, and camera viewpoints remains a key challenge. Recent advances address this by using 3D point clouds, which provide geometry-aware, appearance-invariant representations, and by incorporating equivariance into policy architectures to exploit spatial symmetries. However, existing equivariant approaches often lack interpretability and rigor due to unstructured integration of equivariant components. We introduce canonical policy, a principled framework for 3D equivariant imitation learning that unifies 3D point cloud observations under a canonical representation. We first establish a theory of 3D canonical representations, enabling equivariant observation-to-action mappings by grouping both in-distribution and out-of-distribution point clouds to a canonical representation. We then propose a flexible policy learning pipeline that leverages geometric symmetries from canonical representation and the expressiveness of modern generative models. We validate canonical policy on 12 diverse simulated tasks and 4 real-world manipulation tasks across 16 configurations, involving variations in object color, shape, camera viewpoint, and robot platform. Compared to state-of-the-art imitation learning policies, canonical policy achieves an average improvement of 18.0% in simulation and 37.6% in real-world experiments, demonstrating superior generalization capability and sample efficiency. For more details, please refer to the project website:this https URL.
View on arXiv@article{zhang2025_2505.18474, title={ Canonical Policy: Learning Canonical 3D Representation for Equivariant Policy }, author={ Zhiyuan Zhang and Zhengtong Xu and Jai Nanda Lakamsani and Yu She }, journal={arXiv preprint arXiv:2505.18474}, year={ 2025 } }