ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17962
  4. Cited By

A Principled Bayesian Framework for Training Binary and Spiking Neural Networks

23 May 2025
James A. Walker
M. Khajehnejad
Adeel Razi
    BDL
ArXiv (abs)PDFHTML

Papers citing "A Principled Bayesian Framework for Training Binary and Spiking Neural Networks"

20 / 20 papers shown
Title
Elucidating the theoretical underpinnings of surrogate gradient learning
  in spiking neural networks
Elucidating the theoretical underpinnings of surrogate gradient learning in spiking neural networks
Julia Gygax
Friedemann Zenke
91
4
0
23 Apr 2024
Automatic Differentiation of Programs with Discrete Randomness
Automatic Differentiation of Programs with Discrete Randomness
Gaurav Arya
Moritz Schauer
Frank Schafer
Chris Rackauckas
80
37
0
16 Oct 2022
Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators
Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators
Alexander Shekhovtsov
MQ
72
5
0
07 Oct 2021
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
  Estimator
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
94
42
0
09 Oct 2020
Event-Based Backpropagation can compute Exact Gradients for Spiking
  Neural Networks
Event-Based Backpropagation can compute Exact Gradients for Spiking Neural Networks
Timo C. Wunderlich
Christian Pehle
86
121
0
17 Sep 2020
Reintroducing Straight-Through Estimators as Principled Methods for
  Stochastic Binary Networks
Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks
Alexander Shekhovtsov
Dmitry Molchanov
MQ
63
16
0
11 Jun 2020
Training Binary Neural Networks using the Bayesian Learning Rule
Training Binary Neural Networks using the Bayesian Learning Rule
Xiangming Meng
Roman Bachmann
Mohammad Emtiyaz Khan
BDLMQ
84
42
0
25 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
562
10,591
0
17 Feb 2020
Understanding Straight-Through Estimator in Training Activation
  Quantized Neural Nets
Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets
Penghang Yin
J. Lyu
Shuai Zhang
Stanley Osher
Y. Qi
Jack Xin
MQLLMSV
149
319
0
13 Mar 2019
Surrogate Gradient Learning in Spiking Neural Networks
Surrogate Gradient Learning in Spiking Neural Networks
Emre Neftci
Hesham Mostafa
Friedemann Zenke
106
1,244
0
28 Jan 2019
Variational Dropout via Empirical Bayes
Variational Dropout via Empirical Bayes
V. Kharitonov
Dmitry Molchanov
Dmitry Vetrov
BDL
55
9
0
01 Nov 2018
Probabilistic Binary Neural Networks
Probabilistic Binary Neural Networks
Jorn W. T. Peters
Max Welling
BDLUQCVMQ
77
52
0
10 Sep 2018
Deep Learning in Spiking Neural Networks
Deep Learning in Spiking Neural Networks
A. Tavanaei
M. Ghodrati
Saeed Reza Kheradpisheh
T. Masquelier
Anthony Maida
98
1,080
0
22 Apr 2018
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
367
5,390
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
207
2,541
0
02 Nov 2016
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
  Networks
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
MQ
181
4,369
0
16 Mar 2016
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
231
1,519
0
08 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCVBDL
196
1,894
0
20 May 2015
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.1K
23,414
0
03 Jun 2014
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
406
3,158
0
15 Aug 2013
1