ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17902
  4. Cited By

Evolving Machine Learning: A Survey

23 May 2025
Ignacio Cabrera Martin
Subhaditya Mukherjee
Almas Baimagambetov
Joaquin Vanschoren
Nikolaos Polatidis
    VLM
ArXivPDFHTML

Papers citing "Evolving Machine Learning: A Survey"

29 / 29 papers shown
Title
One or Two Things We know about Concept Drift -- A Survey on Monitoring
  Evolving Environments
One or Two Things We know about Concept Drift -- A Survey on Monitoring Evolving Environments
Fabian Hinder
Valerie Vaquet
Barbara Hammer
52
8
0
24 Oct 2023
T-SaS: Toward Shift-aware Dynamic Adaptation for Streaming Data
T-SaS: Toward Shift-aware Dynamic Adaptation for Streaming Data
Weijieying Ren
Tianxiang Zhao
Wei Qin
Kunpeng Liu
TTA
AI4TS
47
6
0
05 Sep 2023
From Concept Drift to Model Degradation: An Overview on
  Performance-Aware Drift Detectors
From Concept Drift to Model Degradation: An Overview on Performance-Aware Drift Detectors
Firas Bayram
Bestoun S. Ahmed
A. Kassler
37
213
0
21 Mar 2022
Suitability of Different Metric Choices for Concept Drift Detection
Suitability of Different Metric Choices for Concept Drift Detection
Fabian Hinder
Valerie Vaquet
Barbara Hammer
19
16
0
19 Feb 2022
Improving the performance of bagging ensembles for data streams through
  mini-batching
Improving the performance of bagging ensembles for data streams through mini-batching
Guilherme Weigert Cassales
Heitor Murilo Gomes
Albert Bifet
Bernhard Pfahringer
H. Senger
AI4TS
35
13
0
18 Dec 2021
Task-Sensitive Concept Drift Detector with Constraint Embedding
Task-Sensitive Concept Drift Detector with Constraint Embedding
Andrea Castellani
Sebastian Schmitt
Barbara Hammer
25
12
0
16 Aug 2021
Detecting Concept Drift With Neural Network Model Uncertainty
Detecting Concept Drift With Neural Network Model Uncertainty
Lucas Baier
Tim Schlör
Jakob Schöffer
Niklas Kühl
41
28
0
05 Jul 2021
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
403
40,217
0
22 Oct 2020
Rethinking Experience Replay: a Bag of Tricks for Continual Learning
Rethinking Experience Replay: a Bag of Tricks for Continual Learning
Pietro Buzzega
Matteo Boschini
Angelo Porrello
Simone Calderara
CLL
33
149
0
12 Oct 2020
CONDA-PM -- A Systematic Review and Framework for Concept Drift Analysis
  in Process Mining
CONDA-PM -- A Systematic Review and Framework for Concept Drift Analysis in Process Mining
G. El-khawaga
Mervat Abu-Elkheir
S. Barakat
A. Riad
M. Reichert
10
12
0
08 Sep 2020
Adaptation Strategies for Automated Machine Learning on Evolving Data
Adaptation Strategies for Automated Machine Learning on Evolving Data
B. Celik
Joaquin Vanschoren
41
54
0
09 Jun 2020
Learning under Concept Drift: A Review
Learning under Concept Drift: A Review
Jie Lu
Anjin Liu
Fan Dong
Feng Gu
João Gama
Guangquan Zhang
AI4TS
48
1,262
0
13 Apr 2020
Concept Drift Adaptive Physical Event Detection for Social Media Streams
Concept Drift Adaptive Physical Event Detection for Social Media Streams
Abhijit Suprem
A. Musaev
C. Pu
24
12
0
17 Sep 2019
Toward Understanding Catastrophic Forgetting in Continual Learning
Toward Understanding Catastrophic Forgetting in Continual Learning
Cuong V Nguyen
Alessandro Achille
Michael Lam
Tal Hassner
Vijay Mahadevan
Stefano Soatto
41
92
0
02 Aug 2019
AutoGrow: Automatic Layer Growing in Deep Convolutional Networks
AutoGrow: Automatic Layer Growing in Deep Convolutional Networks
W. Wen
Feng Yan
Yiran Chen
H. Li
41
39
0
07 Jun 2019
Autonomous Deep Learning: Continual Learning Approach for Dynamic
  Environments
Autonomous Deep Learning: Continual Learning Approach for Dynamic Environments
Andri Ashfahani
Mahardhika Pratama
53
69
0
17 Oct 2018
Continual Lifelong Learning with Neural Networks: A Review
Continual Lifelong Learning with Neural Networks: A Review
G. I. Parisi
Ronald Kemker
Jose L. Part
Christopher Kanan
S. Wermter
KELM
CLL
121
2,854
0
21 Feb 2018
Lifelong Learning with Dynamically Expandable Networks
Lifelong Learning with Dynamically Expandable Networks
Jaehong Yoon
Eunho Yang
Jeongtae Lee
Sung Ju Hwang
CLL
81
1,214
0
04 Aug 2017
Understanding Concept Drift
Understanding Concept Drift
Geoffrey I. Webb
Loong Kuan Lee
F. Petitjean
Bart Goethals
18
68
0
02 Apr 2017
On the Reliable Detection of Concept Drift from Streaming Unlabeled Data
On the Reliable Detection of Concept Drift from Streaming Unlabeled Data
Tegjyot Singh Sethi
M. Kantardzic
26
174
0
31 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
759
11,793
0
09 Mar 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
268
7,410
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLL
OOD
93
3,713
0
23 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Characterizing Concept Drift
Characterizing Concept Drift
Geoffrey I. Webb
Roy Hyde
Hong Cao
Hai-Long Nguyen
F. Petitjean
36
418
0
12 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
203
8,793
0
01 Oct 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
857
149,474
0
22 Dec 2014
OpenML: networked science in machine learning
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedML
AI4CE
100
1,310
0
29 Jul 2014
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based
  Neural Networks
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
130
1,428
0
21 Dec 2013
1