Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.17902
Cited By
Evolving Machine Learning: A Survey
23 May 2025
Ignacio Cabrera Martin
Subhaditya Mukherjee
Almas Baimagambetov
Joaquin Vanschoren
Nikolaos Polatidis
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evolving Machine Learning: A Survey"
29 / 29 papers shown
Title
One or Two Things We know about Concept Drift -- A Survey on Monitoring Evolving Environments
Fabian Hinder
Valerie Vaquet
Barbara Hammer
52
8
0
24 Oct 2023
T-SaS: Toward Shift-aware Dynamic Adaptation for Streaming Data
Weijieying Ren
Tianxiang Zhao
Wei Qin
Kunpeng Liu
TTA
AI4TS
47
6
0
05 Sep 2023
From Concept Drift to Model Degradation: An Overview on Performance-Aware Drift Detectors
Firas Bayram
Bestoun S. Ahmed
A. Kassler
37
213
0
21 Mar 2022
Suitability of Different Metric Choices for Concept Drift Detection
Fabian Hinder
Valerie Vaquet
Barbara Hammer
19
16
0
19 Feb 2022
Improving the performance of bagging ensembles for data streams through mini-batching
Guilherme Weigert Cassales
Heitor Murilo Gomes
Albert Bifet
Bernhard Pfahringer
H. Senger
AI4TS
35
13
0
18 Dec 2021
Task-Sensitive Concept Drift Detector with Constraint Embedding
Andrea Castellani
Sebastian Schmitt
Barbara Hammer
25
12
0
16 Aug 2021
Detecting Concept Drift With Neural Network Model Uncertainty
Lucas Baier
Tim Schlör
Jakob Schöffer
Niklas Kühl
41
28
0
05 Jul 2021
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
376
40,217
0
22 Oct 2020
Rethinking Experience Replay: a Bag of Tricks for Continual Learning
Pietro Buzzega
Matteo Boschini
Angelo Porrello
Simone Calderara
CLL
33
149
0
12 Oct 2020
CONDA-PM -- A Systematic Review and Framework for Concept Drift Analysis in Process Mining
G. El-khawaga
Mervat Abu-Elkheir
S. Barakat
A. Riad
M. Reichert
8
12
0
08 Sep 2020
Adaptation Strategies for Automated Machine Learning on Evolving Data
B. Celik
Joaquin Vanschoren
41
54
0
09 Jun 2020
Learning under Concept Drift: A Review
Jie Lu
Anjin Liu
Fan Dong
Feng Gu
João Gama
Guangquan Zhang
AI4TS
48
1,262
0
13 Apr 2020
Concept Drift Adaptive Physical Event Detection for Social Media Streams
Abhijit Suprem
A. Musaev
C. Pu
24
12
0
17 Sep 2019
Toward Understanding Catastrophic Forgetting in Continual Learning
Cuong V Nguyen
Alessandro Achille
Michael Lam
Tal Hassner
Vijay Mahadevan
Stefano Soatto
41
92
0
02 Aug 2019
AutoGrow: Automatic Layer Growing in Deep Convolutional Networks
W. Wen
Feng Yan
Yiran Chen
H. Li
41
39
0
07 Jun 2019
Autonomous Deep Learning: Continual Learning Approach for Dynamic Environments
Andri Ashfahani
Mahardhika Pratama
50
69
0
17 Oct 2018
Continual Lifelong Learning with Neural Networks: A Review
G. I. Parisi
Ronald Kemker
Jose L. Part
Christopher Kanan
S. Wermter
KELM
CLL
121
2,854
0
21 Feb 2018
Lifelong Learning with Dynamically Expandable Networks
Jaehong Yoon
Eunho Yang
Jeongtae Lee
Sung Ju Hwang
CLL
81
1,214
0
04 Aug 2017
Understanding Concept Drift
Geoffrey I. Webb
Loong Kuan Lee
F. Petitjean
Bart Goethals
18
68
0
02 Apr 2017
On the Reliable Detection of Concept Drift from Streaming Unlabeled Data
Tegjyot Singh Sethi
M. Kantardzic
21
174
0
31 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
759
11,793
0
09 Mar 2017
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
265
7,410
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLL
OOD
91
3,713
0
23 Nov 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Characterizing Concept Drift
Geoffrey I. Webb
Roy Hyde
Hong Cao
Hai-Long Nguyen
F. Petitjean
34
418
0
12 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
203
8,793
0
01 Oct 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
840
149,474
0
22 Dec 2014
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedML
AI4CE
100
1,310
0
29 Jul 2014
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
127
1,428
0
21 Dec 2013
1