ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14239
  4. Cited By
Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation

Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation

20 May 2025
Bin-Bin Gao
Xiaochen Chen
Z. Huang
Congchong Nie
Jun Liu
Jinxiang Lai
Guannan Jiang
Xi-Zhao Wang
Chengjie Wang
ArXivPDFHTML

Papers citing "Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation"

13 / 13 papers shown
Title
Open-vocabulary vs. Closed-set: Best Practice for Few-shot Object
  Detection Considering Text Describability
Open-vocabulary vs. Closed-set: Best Practice for Few-shot Object Detection Considering Text Describability
Yusuke Hosoya
Masanori Suganuma
Takayuki Okatani
ObjD
21
0
0
20 Oct 2024
Detecting Endangered Marine Species in Autonomous Underwater Vehicle
  Imagery Using Point Annotations and Few-Shot Learning
Detecting Endangered Marine Species in Autonomous Underwater Vehicle Imagery Using Point Annotations and Few-Shot Learning
Heather J. Doig
Oscar Pizarro
Jacquomo Monk
Stefan Williams
19
0
0
04 Jun 2024
UniFS: Universal Few-shot Instance Perception with Point Representations
UniFS: Universal Few-shot Instance Perception with Point Representations
Sheng Jin
Ruijie Yao
Lumin Xu
Wentao Liu
Chao Qian
Ji Wu
Ping Luo
48
2
0
30 Apr 2024
Re-Scoring Using Image-Language Similarity for Few-Shot Object Detection
Re-Scoring Using Image-Language Similarity for Few-Shot Object Detection
Min Jae Jung
S. Han
Joohee Kim
28
13
0
01 Nov 2023
The Art of Camouflage: Few-shot Learning for Animal Detection and
  Segmentation
The Art of Camouflage: Few-shot Learning for Animal Detection and Segmentation
Thanh-Tung Phan-Nguyen
Anh-Khoa Nguyen Vu
Nhat-Duy Nguyen
Vinh-Tiep Nguyen
T. Ngo
Thanh-Toan Do
M. Tran
Tam V. Nguyen
39
4
0
15 Apr 2023
LEDetection: A Simple Framework for Semi-Supervised Few-Shot Object
  Detection
LEDetection: A Simple Framework for Semi-Supervised Few-Shot Object Detection
Phi Vu Tran
ObjD
28
2
0
10 Mar 2023
Proposal Distribution Calibration for Few-Shot Object Detection
Proposal Distribution Calibration for Few-Shot Object Detection
Bohao Li
Chang-rui Liu
Mengnan Shi
Xiaozhong Chen
Xiang Ji
QiXiang Ye
ObjD
31
5
0
15 Dec 2022
A Survey of Deep Learning for Low-Shot Object Detection
A Survey of Deep Learning for Low-Shot Object Detection
Qihan Huang
Haofei Zhang
Mengqi Xue
Mingli Song
Xiuming Zhang
ObjD
38
18
0
06 Dec 2021
Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection
Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection
Chenchen Zhu
Fangyi Chen
Uzair Ahmed
Zhiqiang Shen
Marios Savvides
ObjD
102
178
0
02 Mar 2021
Frustratingly Simple Few-Shot Object Detection
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
Feng Yu
ObjD
101
544
0
16 Mar 2020
Solving Missing-Annotation Object Detection with Background
  Recalibration Loss
Solving Missing-Annotation Object Detection with Background Recalibration Loss
Han Zhang
Fangyi Chen
Zhiqiang Shen
Qiqi Hao
Chenchen Zhu
Marios Savvides
ObjD
135
52
0
12 Feb 2020
Meta R-CNN : Towards General Solver for Instance-level Few-shot Learning
Meta R-CNN : Towards General Solver for Instance-level Few-shot Learning
Xiaopeng Yan
Ziliang Chen
Anni Xu
Xiaoxi Wang
Xiaodan Liang
Liang Lin
ObjD
177
446
0
28 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
460
11,715
0
09 Mar 2017
1