ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.00278
28
13

Re-Scoring Using Image-Language Similarity for Few-Shot Object Detection

1 November 2023
Min Jae Jung
S. Han
Joohee Kim
ArXivPDFHTML
Abstract

Few-shot object detection, which focuses on detecting novel objects with few labels, is an emerging challenge in the community. Recent studies show that adapting a pre-trained model or modified loss function can improve performance. In this paper, we explore leveraging the power of Contrastive Language-Image Pre-training (CLIP) and hard negative classification loss in low data setting. Specifically, we propose Re-scoring using Image-language Similarity for Few-shot object detection (RISF) which extends Faster R-CNN by introducing Calibration Module using CLIP (CM-CLIP) and Background Negative Re-scale Loss (BNRL). The former adapts CLIP, which performs zero-shot classification, to re-score the classification scores of a detector using image-class similarities, the latter is modified classification loss considering the punishment for fake backgrounds as well as confusing categories on a generalized few-shot object detection dataset. Extensive experiments on MS-COCO and PASCAL VOC show that the proposed RISF substantially outperforms the state-of-the-art approaches. The code will be available.

View on arXiv
Comments on this paper