ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14005
  4. Cited By
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks

Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks

20 May 2025
Han Zhang
Yan Wang
Guanfeng Liu
Pengfei Ding
Huaxiong Wang
Kwok-Yan Lam
ArXivPDFHTML

Papers citing "Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks"

23 / 23 papers shown
Title
How Interpretable Are Interpretable Graph Neural Networks?
How Interpretable Are Interpretable Graph Neural Networks?
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
61
6
0
12 Jun 2024
Generating Robust Counterfactual Witnesses for Graph Neural Networks
Generating Robust Counterfactual Witnesses for Graph Neural Networks
Dazhuo Qiu
Mengying Wang
Arijit Khan
Yinghui Wu
63
3
0
30 Apr 2024
Adaptive Hypergraph Network for Trust Prediction
Adaptive Hypergraph Network for Trust Prediction
Rongwei Xu
Guanfeng Liu
Yan Wang
Xuyun Zhang
Kai Zheng
Xiaofang Zhou
37
1
0
07 Feb 2024
Generating In-Distribution Proxy Graphs for Explaining Graph Neural
  Networks
Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks
Zhuomin Chen
Jiaxing Zhang
Jingchao Ni
Xiaoting Li
Yuchen Bian
Md. Mezbahul Islam
A. Mondal
Hua Wei
Dongsheng Luo
56
2
0
03 Feb 2024
Few-Shot Causal Representation Learning for Out-of-Distribution
  Generalization on Heterogeneous Graphs
Few-Shot Causal Representation Learning for Out-of-Distribution Generalization on Heterogeneous Graphs
Pengfei Ding
Yan Wang
Guanfeng Liu
Nan Wang
Xiaofang Zhou
OODD
OOD
46
4
0
07 Jan 2024
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising
  Diffusion
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
50
5
0
30 Oct 2023
Evaluating Explainability for Graph Neural Networks
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
66
104
0
19 Aug 2022
GraphFramEx: Towards Systematic Evaluation of Explainability Methods for
  Graph Neural Networks
GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks
Kenza Amara
Rex Ying
Zitao Zhang
Zhihao Han
Yinan Shan
U. Brandes
S. Schemm
Ce Zhang
39
51
0
20 Jun 2022
GOOD: A Graph Out-of-Distribution Benchmark
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
62
117
0
16 Jun 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
140
226
0
30 Jan 2022
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
33
258
0
11 Jun 2021
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
Meng Liu
Youzhi Luo
Limei Wang
Yaochen Xie
Haonan Yuan
...
Haoran Liu
Cong Fu
Bora Oztekin
Xuan Zhang
Shuiwang Ji
GNN
60
120
0
23 Mar 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
132
145
0
05 Feb 2021
Parameterized Explainer for Graph Neural Network
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
120
546
0
09 Nov 2020
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph
  Neural Networks
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh Nhat Vu
My T. Thai
BDL
35
330
0
12 Oct 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
56
392
0
03 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
142
10,591
0
17 Feb 2020
Wasserstein Weisfeiler-Lehman Graph Kernels
Wasserstein Weisfeiler-Lehman Graph Kernels
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
50
196
0
04 Jun 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
109
1,300
0
10 Mar 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
148
4,289
0
06 Mar 2019
Mean-field theory of graph neural networks in graph partitioning
Mean-field theory of graph neural networks in graph partitioning
T. Kawamoto
Masashi Tsubaki
T. Obuchi
41
58
0
29 Oct 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
81
842
0
09 Feb 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
292
19,902
0
30 Oct 2017
1