ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.13631
  4. Cited By
Learning (Approximately) Equivariant Networks via Constrained Optimization

Learning (Approximately) Equivariant Networks via Constrained Optimization

19 May 2025
Andrei Manolache
Luiz F.O. Chamon
Mathias Niepert
ArXivPDFHTML

Papers citing "Learning (Approximately) Equivariant Networks via Constrained Optimization"

19 / 19 papers shown
Title
Relaxed Equivariance via Multitask Learning
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
82
3
0
23 Oct 2024
Improving Equivariant Model Training via Constraint Relaxation
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
62
5
0
23 Aug 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
71
7
0
23 May 2024
Equivariant Graph Neural Operator for Modeling 3D Dynamics
Equivariant Graph Neural Operator for Modeling 3D Dynamics
Minkai Xu
Jiaqi Han
Aaron Lou
Jean Kossaifi
Arvind Ramanathan
Kamyar Azizzadenesheli
J. Leskovec
Stefano Ermon
A. Anandkumar
AI4CE
82
21
0
19 Jan 2024
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
53
23
0
27 May 2023
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
66
463
0
15 Jun 2022
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
70
446
0
02 Jun 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas Guibas
3DPC
170
322
0
25 Apr 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
71
997
0
19 Feb 2021
On the Universality of Rotation Equivariant Point Cloud Networks
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
69
82
0
06 Oct 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
107
683
0
18 Jun 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
302
42,038
0
03 Dec 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
188
7,554
0
01 Oct 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
79
267
0
24 Jun 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
361
19,991
0
30 Oct 2017
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
127
1,069
0
26 Jun 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
67
518
0
13 Feb 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
501
28,901
0
09 Sep 2016
Escaping the Local Minima via Simulated Annealing: Optimization of
  Approximately Convex Functions
Escaping the Local Minima via Simulated Annealing: Optimization of Approximately Convex Functions
A. Belloni
Tengyuan Liang
Hariharan Narayanan
Alexander Rakhlin
118
77
0
28 Jan 2015
1