ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.12437
  4. Cited By
Addressing the Scarcity of Benchmarks for Graph XAI

Addressing the Scarcity of Benchmarks for Graph XAI

18 May 2025
Michele Fontanesi
Alessio Micheli
Marco Podda
Domenico Tortorella
ArXiv (abs)PDFHTML

Papers citing "Addressing the Scarcity of Benchmarks for Graph XAI"

14 / 14 papers shown
Title
PowerGraph: A power grid benchmark dataset for graph neural networks
PowerGraph: A power grid benchmark dataset for graph neural networks
Anna Varbella
Kenza Amara
B. Gjorgiev
Mennatallah El-Assady
G. Sansavini
39
9
0
05 Feb 2024
A Survey on Explainability of Graph Neural Networks
A Survey on Explainability of Graph Neural Networks
Jaykumar Kakkad
Jaspal Jannu
Kartik Sharma
Charu C. Aggarwal
Sourav Medya
60
28
0
02 Jun 2023
Evaluating Explainability for Graph Neural Networks
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
85
110
0
19 Aug 2022
GraphFramEx: Towards Systematic Evaluation of Explainability Methods for
  Graph Neural Networks
GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks
Kenza Amara
Rex Ying
Zitao Zhang
Zhihao Han
Yinan Shan
U. Brandes
S. Schemm
Ce Zhang
73
56
0
20 Jun 2022
On the approximation capability of GNNs in node
  classification/regression tasks
On the approximation capability of GNNs in node classification/regression tasks
Giuseppe Alessio D’Inverno
Monica Bianchini
M. Sampoli
F. Scarselli
121
12
0
16 Jun 2021
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
245
828
0
16 Jul 2020
Explainability Techniques for Graph Convolutional Networks
Explainability Techniques for Graph Convolutional Networks
Federico Baldassarre
Hossein Azizpour
GNNFAtt
178
272
0
31 May 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
150
1,334
0
10 Mar 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DHGNN3DPC
247
4,368
0
06 Mar 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
261
7,710
0
01 Oct 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
1.1K
7,201
0
20 Apr 2018
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
193
6,027
0
04 Mar 2017
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
253
9,342
0
14 Dec 2015
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
317
7,321
0
20 Dec 2013
1